ID: 1209.4339

The time of bootstrap percolation with dense initial sets for all thresholds

September 19, 2012

View on ArXiv
Béla Bollobás, Paul Smith, Andrew J. Uzzell
Mathematics
Probability
Combinatorics

We study the percolation time of the $r$-neighbour bootstrap percolation model on the discrete torus $(\Z/n\Z)^d$. For $t$ at most a polylog function of $n$ and initial infection probabilities within certain ranges depending on $t$, we prove that the percolation time of a random subset of the torus is exactly equal to $t$ with high probability as $n$ tends to infinity. Our proof rests crucially on three new extremal theorems that together establish an almost complete understanding of the geometric behaviour of the $r$-neighbour bootstrap process in the dense setting. The special case $d-r=0$ of our result was proved recently by Bollob\'as, Holmgren, Smith and Uzzell.

Similar papers 1

The time of bootstrap percolation for dense initial sets

May 17, 2012

96% Match
Béla Bollobás, Cecilia Holmgren, ... , Uzzell Andrew J.
Combinatorics
Probability

In r-neighbour bootstrap percolation on the vertex set of a graph G, vertices are initially infected independently with some probability p. At each time step, the infected set expands by infecting all uninfected vertices that have at least r infected neighbours. We study the distribution of the time t at which all vertices become infected. Given t = t(n) = o(log n/log log n), we prove a sharp threshold result for the probability that percolation occurs by time t in d-neighbou...

Find SimilarView on arXiv

The sharp threshold for bootstrap percolation in all dimensions

October 16, 2010

90% Match
József Balogh, Béla Bollobás, ... , Morris Robert
Probability
Combinatorics
Dynamical Systems
Mathematical Physics

In r-neighbour bootstrap percolation on a graph G, a (typically random) set A of initially 'infected' vertices spreads by infecting (at each time step) vertices with at least r already-infected neighbours. This process may be viewed as a monotone version of the Glauber dynamics of the Ising model, and has been extensively studied on the d-dimensional grid $[n]^d$. The elements of the set A are usually chosen independently, with some density p, and the main question is to dete...

Find SimilarView on arXiv

An Improved Upper Bound for Bootstrap Percolation in All Dimensions

April 14, 2012

90% Match
Andrew J. Uzzell
Combinatorics
Probability

In $r$-neighbor bootstrap percolation on the vertex set of a graph $G$, a set $A$ of initially infected vertices spreads by infecting, at each time step, all uninfected vertices with at least $r$ previously infected neighbors. When the elements of $A$ are chosen independently with some probability $p$, it is natural to study the critical probability $p_c(G,r)$ at which it becomes likely that all of $V(G)$ will eventually become infected. Improving a result of Balogh, Bollob\'...

Find SimilarView on arXiv

Bootstrap percolation in high dimensions

July 17, 2009

90% Match
Jozsef Balogh, Bela Bollobas, Robert Morris
Probability
Combinatorics

In r-neighbour bootstrap percolation on a graph G, a set of initially infected vertices A \subset V(G) is chosen independently at random, with density p, and new vertices are subsequently infected if they have at least r infected neighbours. The set A is said to percolate if eventually all vertices are infected. Our aim is to understand this process on the grid, [n]^d, for arbitrary functions n = n(t), d = d(t) and r = r(t), as t -> infinity. The main question is to determine...

Find SimilarView on arXiv

Dynamic Monopolies in Reversible Bootstrap Percolation

May 5, 2018

90% Match
Clemens Jeger, Ahad N. Zehmakan
Data Structures and Algorith...
Discrete Mathematics
Combinatorics

We study an extremal question for the (reversible) $r-$bootstrap percolation processes. Given a graph and an initial configuration where each vertex is active or inactive, in the $r-$bootstrap percolation process the following rule is applied in discrete-time rounds: each vertex gets active if it has at least $r$ active neighbors, and an active vertex stays active forever. In the reversible $r$-bootstrap percolation, each vertex gets active if it has at least $r$ active neigh...

Find SimilarView on arXiv

Bootstrap percolation in three dimensions

June 27, 2008

89% Match
József Balogh, Béla Bollobás, Robert Morris
Combinatorics
Probability

By bootstrap percolation we mean the following deterministic process on a graph $G$. Given a set $A$ of vertices "infected" at time 0, new vertices are subsequently infected, at each time step, if they have at least $r\in\mathbb{N}$ previously infected neighbors. When the set $A$ is chosen at random, the main aim is to determine the critical probability $p_c(G,r)$ at which percolation (infection of the entire graph) becomes likely to occur. This bootstrap process has been ext...

Find SimilarView on arXiv

The $d$-dimensional bootstrap percolation models with threshold at least double exponential

January 22, 2022

89% Match
Daniel Blanquicett
Probability

Consider a $p$-random subset $A$ of initially infected vertices in the discrete cube $[L]^d$, and assume that the neighbourhood of each vertex consists of the $a_i$ nearest neighbours in the $\pm e_i$-directions for each $i \in \{1,2,\dots, d\}$, where $a_1\le a_2\le \dots \le a_d$. Suppose we infect any healthy vertex $v\in [L]^d$ already having $r$ infected neighbours, and that infected sites remain infected forever. In this paper we determine the $(d-1)$-times iterated log...

Find SimilarView on arXiv

Extremal Bounds for Bootstrap Percolation in the Hypercube

June 15, 2015

89% Match
Natasha Morrison, Jonathan A. Noel
Combinatorics

The $r$-neighbour bootstrap percolation process on a graph $G$ starts with an initial set $A_0$ of "infected" vertices and, at each step of the process, a healthy vertex becomes infected if it has at least $r$ infected neighbours (once a vertex becomes infected, it remains infected forever). If every vertex of $G$ eventually becomes infected, then we say that $A_0$ percolates. We prove a conjecture of Balogh and Bollob\'as which says that, for fixed $r$ and $d\to\infty$, ev...

Find SimilarView on arXiv

Smallest percolating sets in bootstrap percolation on grids

July 3, 2019

89% Match
Michał Przykucki, Thomas Shelton
Combinatorics

In this paper we fill in a fundamental gap in the extremal bootstrap percolation literature, by providing the first proof of the fact that for all $d \geq 1$, the size of the smallest percolating sets in $d$-neighbour bootstrap percolation on $[n]^d$, the $d$-dimensional grid of size $n$, is $n^{d-1}$. Additionally, we prove that such sets percolate in time at most $c_d n^2$, for some constant $c_d >0 $ depending on $d$ only.

Find SimilarView on arXiv

Deterministic bootstrap percolation in high dimensional grids

August 30, 2013

89% Match
Hao Huang, Choongbum Lee
Combinatorics

In this paper, we study the k-neighbor bootstrap percolation process on the d-dimensional grid [n]^d, and show that the minimum number of initial vertices that percolate is (1-d/k)n^d + O(n^{d-1})$ when d<=k<=2d. This confirms a conjecture of Pete.

Find SimilarView on arXiv