October 31, 2012
Similar papers 2
August 7, 2014
We follow the main stocks belonging to the New York Stock Exchange and to Nasdaq from 2003 to 2012, through years of normality and of crisis, and study the dynamics of networks built on two measures expressing relations between those stocks: correlation, which is symmetric and measures how similar two stocks behave, and Transfer Entropy, which is non-symmetric and measures the influence of the time series of one stock onto another in terms of the information that the time ser...
January 11, 2014
In the last years efforts in econophysics have been shifted to study how network theory can facilitate understanding of complex financial markets. Main part of these efforts is the study of correlation-based hierarchical networks. This is somewhat surprising as the underlying assumptions of research looking at financial markets is that they behave chaotically. In fact it's common for econophysicists to estimate maximal Lyapunov exponent for log returns of a given financial as...
October 9, 2013
Stock markets are complex systems exhibiting collective phenomena and particular features such as synchronization, fluctuations distributed as power-laws, non-random structures and similarity to neural networks. Such specific properties suggest that markets operate at a very special point. Financial markets are believed to be critical by analogy to physical systems but few statistically founded evidence have been given. Through a data-based methodology and comparison to simul...
October 30, 2017
Extraction of interaction networks from multi-variate time-series is one of the topics of broad interest in complex systems. Although this method has a wide range of applications, most of the previous analyses have focused on the pairwise relations. Here we establish the potential of such a method to elicit aggregated behavior of the system by making a connection with the concepts from percolation theory. We study the dynamical interaction networks of a financial market extra...
April 18, 2017
Financial global crisis has devastating impacts to economies since early XX century and continues to impose increasing collateral damages for governments, enterprises, and society in general. Up to now, all efforts to obtain efficient methods to predict these events have been disappointing. However, the quest for a robust estimator of the degree of the market efficiency, or even, a crisis predictor, is still one of the most studied subjects in the field. We present here an or...
November 16, 2010
The dynamic network of relationships among corporations underlies cascading economic failures including the current economic crisis, and can be inferred from correlations in market value fluctuations. We analyze the time dependence of the network of correlations to reveal the changing relationships among the financial, technology, and basic materials sectors with rising and falling markets and resource constraints. The financial sector links otherwise weakly coupled economic ...
December 31, 2020
In the past two decades, the field of applied finance has tremendously benefited from graph theory. As a result, novel methods ranging from asset network estimation to hierarchical asset selection and portfolio allocation are now part of practitioners' toolboxes. In this paper, we investigate the fundamental problem of learning undirected graphical models under Laplacian structural constraints from the point of view of financial market times series data. In particular, we pre...
October 28, 2015
We introduce the Speculative Influence Network (SIN) to decipher the causal relationships between sectors (and/or firms) during financial bubbles. The SIN is constructed in two steps. First, we develop a Hidden Markov Model (HMM) of regime-switching between a normal market phase represented by a geometric Brownian motion (GBM) and a bubble regime represented by the stochastic super-exponential Sornette-Andersen (2002) bubble model. The calibration of the HMM provides the prob...
March 9, 2014
The econophysics approach to socio-economic systems is based on the assumption of their complexity. Such assumption inevitably lead to another assumption, namely that underlying interconnections within socio-economic systems, particularly financial markets, are nonlinear, which is shown to be true even in mainstream economic literature. Thus it is surprising to see that network analysis of financial markets is based on linear correlation and its derivatives. An analysis based...
January 16, 2004
We review the recent approach of correlation based networks of financial equities. We investigate portfolio of stocks at different time horizons, financial indices and volatility time series and we show that meaningful economic information can be extracted from noise dressed correlation matrices. We show that the method can be used to falsify widespread market models by directly comparing the topological properties of networks of real and artificial markets.