February 28, 2013
We discuss the physical properties of realistic memristive, memcapacitive and meminductive systems. In particular, by employing the well-known theory of response functions and microscopic derivations, we show that resistors, capacitors and inductors with memory emerge naturally in the response of systems - especially those of nanoscale dimensions - subjected to external perturbations. As a consequence, since memristances, memcapacitances, and meminductances are simply response functions, they are not necessarily finite. This means that, unlike what has always been argued in some literature, diverging and non-crossing input-output curves of all these memory elements are physically possible in both quantum and classical regimes. For similar reasons, it is not surprising to find memcapacitances and meminductances that acquire negative values at certain times during dynamics, while the passivity criterion of memristive systems imposes always a non-negative value on the resistance at any given time. We finally show that ideal memristors, namely those whose state depends only on the charge that flows through them (or on the history of the voltage) are subject to very strict physical conditions and are unable to protect their memory state against the unavoidable fluctuations, and therefore are susceptible to a stochastic catastrophe. Similar considerations apply to ideal memcapacitors and meminductors.
Similar papers 1
January 23, 2009
We extend the notion of memristive systems to capacitive and inductive elements, namely capacitors and inductors whose properties depend on the state and history of the system. All these elements show pinched hysteretic loops in the two constitutive variables that define them: current-voltage for the memristor, charge-voltage for the memcapacitor, and current-flux for the meminductor. We argue that these devices are common at the nanoscale where the dynamical properties of el...
November 12, 2010
Memory effects are ubiquitous in nature and are particularly relevant at the nanoscale where the dynamical properties of electrons and ions strongly depend on the history of the system, at least within certain time scales. We review here the memory properties of various materials and systems which appear most strikingly in their non-trivial time-dependent resistive, capacitative and inductive characteristics. We describe these characteristics within the framework of memristor...
June 18, 2010
In this paper, we briefly review the concept of memory circuit elements, namely memristors, memcapacitors and meminductors, and then discuss some applications by focusing mainly on the first class. We present several examples, their modeling and applications ranging from analog programming to biological systems. Since the phenomena associated with memory are ubiquitous at the nanoscale, we expect the interest in these circuit elements to increase in coming years.
October 8, 2009
We suggest electronic circuits with memristors (resistors with memory) that operate as memcapacitors (capacitors with memory) and meminductors (inductors with memory). Using a memristor emulator, the suggested circuits have been built and their operation has been demonstrated, showing a useful and interesting connection between the three memory elements.
September 18, 2014
It is noticed that the inductive and capacitive features of the memristor reflect (and are a quintessence of) such features of any resistor. The very presence in the resistive characteristic v = f(i) of the voltage and current state variables, associated by their electrodynamics sense with electrical and magnetic fields, forces any resister to cause to accumulate some magnetic and electrostatic fields and energies around itself. The present version is strongly extended in the...
September 30, 2010
Memory effects are ubiquitous in nature and the class of memory circuit elements - which includes memristors, memcapacitors and meminductors - shows great potential to understand and simulate the associated fundamental physical processes. Here, we show that such elements can also be used in electronic schemes mimicking biologically-inspired computer architectures, performing digital logic and arithmetic operations, and can expand the capabilities of certain quantum computatio...
February 7, 2016
It is observed that the inductive and capacitive features of the memristor reflect (and are a quintessence of) such features of any resistor. The very presence of the voltage and current state variables, associated by their electrodynamics sense with electrical and magnetic fields, in the resistive characteristic v = f(i), forces any resister to accumulate some magnetic and electrostatic fields and energies around itself, i.e. L and C elements are always present. From the cir...
July 25, 2008
We present a tutorial on the properties of the new ideal circuit element, a memristor. By definition, a memristor M relates the charge q and the magnetic flux $\phi$ in a circuit, and complements a resistor R, a capacitor C, and an inductor L as an ingredient of ideal electrical circuits. The properties of these three elements and their circuits are a part of the standard curricula. The existence of the memristor as the fourth ideal circuit element was predicted in 1971 based...
January 4, 2012
Meminductors and memcapacitors do not allow a Lagrangian formulation in the classical sense since these elements are nonconservative in nature and the associated energies are not state functions. To circumvent this problem, a different configuration space is considered that, instead of the usual loop charges, consist of time-integrated loop charges. As a result, the corresponding Euler-Lagrange equations provide a set of integrated Kirchhoff voltage laws in terms of the eleme...
August 17, 2018
The memory resistor abbreviated memristor was a harmless postulate in 1971. In the decade since 2008, a device claiming to be the missing memristor is on the prowl, seeking recognition as a fundamental circuit element, sometimes wanting electronics textbooks to be rewritten, always promising remarkable digital, analog and neuromorphic computing possibilities. A systematic discussion about the fundamental nature of the device is almost universally absent. This report investiga...