April 8, 2013
Bootstrap percolation is a type of cellular automaton which has been used to model various physical phenomena, such as ferromagnetism. For each natural number $r$, the $r$-neighbour bootstrap process is an update rule for vertices of a graph in one of two states: `infected' or `healthy'. In consecutive rounds, each healthy vertex with at least $r$ infected neighbours becomes itself infected. Percolation is said to occur if every vertex is eventually infected. Usually, the starting set of infected vertices is chosen at random, with all vertices initially infected independently with probability $p$. In that case, given a graph $G$ and infection threshold $r$, a quantity of interest is the critical probability, $p_c(G,r)$, at which percolation becomes likely to occur. In this paper, we look at infinite trees and, answering a problem posed by Balogh, Peres and Pete, we show that for any $b \geq r$ and for any $\epsilon > 0$ there exists a tree $T$ with branching number $\br(T) = b$ and critical probability $p_c(T,r) < \epsilon$. However, this is false if we limit ourselves to the well-studied family of Galton--Watson trees. We show that for every $r \geq 2$ there exists a constant $c_r>0$ such that if $T$ is a Galton--Watson tree with branching number $\br(T) = b \geq r$ then p_c(T,r) > \frac{c_r}{b} e^{-\frac{b}{r-1}}. We also show that this bound is sharp up to a factor of $O(b)$ by giving an explicit family of Galton--Watson trees with critical probability bounded from above by $C_r e^{-\frac{b}{r-1}}$ for some constant $C_r>0$.
Similar papers 1
February 18, 2014
Bootstrap percolation is a cellular automaton modelling the spread of an `infection' on a graph. In this note, we prove a family of lower bounds on the critical probability for $r$-neighbour bootstrap percolation on Galton--Watson trees in terms of moments of the offspring distributions. With this result we confirm a conjecture of Bollob\'as, Gunderson, Holmgren, Janson and Przykucki. We also show that these bounds are best possible up to positive constants not depending on t...
We consider critical percolation on Galton-Watson trees and prove quenched analogues of classical theorems of critical branching processes. We show that the probability critical percolation reaches depth $n$ is asymptotic to a tree-dependent constant times $n^{-1}$. Similarly, conditioned on critical percolation reaching depth $n$, the number of vertices at depth $n$ in the critical percolation cluster almost surely converges in distribution to an exponential random variable ...
July 7, 2011
Graph bootstrap percolation is a deterministic cellular automaton which was introduced by Bollob\'as in 1968, and is defined as follows. Given a graph $H$, and a set $G \subset E(K_n)$ of initially `infected' edges, we infect, at each time step, a new edge $e$ if there is a copy of $H$ in $K_n$ such that $e$ is the only not-yet infected edge of $H$. We say that $G$ percolates in the $H$-bootstrap process if eventually every edge of $K_n$ is infected. The extremal questions fo...
December 21, 2011
We study survival properties of inhomogeneous Galton-Watson processes. We determine the so-called branching number (which is the reciprocal of the critical value for percolation) for these random trees (conditioned on being infinite), which turns out to be an a.s.\ constant. We also shed some light on the way the survival probability varies between the generations. When we perform independent percolation on the family tree of an inhomogeneous Galton-Watson process, the result...
November 29, 2013
We study bootstrap percolation with the threshold parameter $\theta \geq 2$ and the initial probability $p$ on infinite periodic trees that are defined as follows. Each node of a tree has degree selected from a finite predefined set of non-negative integers and starting from any node, all nodes at the same graph distance from it have the same degree. We show the existence of the critical threshold $p_f(\theta) \in (0,1)$ such that with high probability, (i) if $p > p_f(\theta...
March 4, 2015
Graph bootstrap percolation, introduced by Bollob\'as in 1968, is a cellular automaton defined as follows. Given a "small" graph $H$ and a "large" graph $G = G_0 \subseteq K_n$, in consecutive steps we obtain $G_{t+1}$ from $G_t$ by adding to it all new edges $e$ such that $G_t \cup e$ contains a new copy of $H$. We say that $G$ percolates if for some $t \geq 0$, we have $G_t = K_n$. For $H = K_r$, the question about the size of the smallest percolating graphs was independe...
We analyze the metastable states near criticality of the bootstrap percolation on Galton-Watson trees. We find that, depending on the exact choice of the offspring distribution, it is possible to have several distinct metastable states, with varying scaling of their duration while approaching criticality.
July 17, 2009
In r-neighbour bootstrap percolation on a graph G, a set of initially infected vertices A \subset V(G) is chosen independently at random, with density p, and new vertices are subsequently infected if they have at least r infected neighbours. The set A is said to percolate if eventually all vertices are infected. Our aim is to understand this process on the grid, [n]^d, for arbitrary functions n = n(t), d = d(t) and r = r(t), as t -> infinity. The main question is to determine...
In $r$-neighbor bootstrap percolation on the vertex set of a graph $G$, a set $A$ of initially infected vertices spreads by infecting, at each time step, all uninfected vertices with at least $r$ previously infected neighbors. When the elements of $A$ are chosen independently with some probability $p$, it is natural to study the critical probability $p_c(G,r)$ at which it becomes likely that all of $V(G)$ will eventually become infected. Improving a result of Balogh, Bollob\'...
November 8, 2003
Bootstrap percolation on an arbitrary graph has a random initial configuration, where each vertex is occupied with probability p, independently of each other, and a deterministic spreading rule with a fixed parameter k: if a vacant site has at least k occupied neighbors at a certain time step, then it becomes occupied in the next step. This process is well-studied on Z^d; here we investigate it on regular and general infinite trees and on non-amenable Cayley graphs. The criti...