November 5, 2019
This paper is dedicated to the study of the interaction between dynamical systems and percolation models, with views towards the study of viral infections whose virus mutate with time. Recall that r-bootstrap percolation describes a deterministic process where vertices of a graph are infected once r neighbors of it are infected. We generalize this by introducing F(t)-bootstrap percolation, a time-dependent process where the number of neighbouring vertices which need to be inf...
June 8, 2016
We investigate level-set percolation of the Gaussian free field on transient trees, for instance on super-critical Galton-Watson trees conditioned on non-extinction. Recently developed Dynkin-type isomorphism theorems provide a comparison with percolation of the vacant set of random interlacements, which is more tractable in the case of trees. If $h_*$ and $u_*$ denote the respective (non-negative) critical values of level-set percolation of the Gaussian free field and of the...
November 5, 2011
A bootstrap percolation process on a graph $G$ is an "infection" process which evolves in rounds. Initially, there is a subset of infected nodes and in each subsequent round each uninfected node which has at least $r$ infected neighbours becomes infected and remains so forever. The parameter $r\geq 2$ is fixed. Such processes have been used as models for the spread of ideas or trends within a network of individuals. We analyse bootstrap percolation process in the case where...
August 24, 2020
We study the totally asymmetric simple exclusion process (TASEP) on trees where particles are generated at the root. Particles can only jump away from the root, and they jump from $x$ to $y$ at rate $r_{x,y}$ provided $y$ is empty. Starting from the all empty initial condition, we show that the distribution of the configuration at time $t$ converges to an equilibrium. We study the current and give conditions on the transition rates such that the current is of linear order or ...
June 23, 2018
In the $r$-neighbour bootstrap process on a graph $G$, vertices are infected (in each time step) if they have at least $r$ already-infected neighbours. Motivated by its close connections to models from statistical physics, such as the Ising model of ferromagnetism, and kinetically constrained spin models of the liquid-glass transition, the most extensively-studied case is the two-neighbour bootstrap process on the two-dimensional grid $[n]^2$. Around 15 years ago, in a major ...
December 11, 2023
We consider critical percolation on a supercritical Galton-Watson tree. We show that, when the offspring distribution is in the domain of attraction of an $\alpha$-stable law for some $\alpha \in (1,2)$, or has finite variance, several annealed properties also hold in a quenched setting. In particular, the following properties hold for the critical root cluster on almost every realisation of the tree: (1) the rescaled survival probabilities converge; (2) the Yaglom limit or i...
May 29, 2015
Bootstrap percolation is a type of cellular automaton on graphs, introduced as a simple model of the dynamics of ferromagnetism. Vertices in a graph can be in one of two states: `healthy' or `infected' and from an initial configuration of states, healthy vertices become infected by local rules. While the usual bootstrap processes are monotone in the sets of infected vertices, in this paper, a modification is examined in which infected vertices can return to a healthy state. V...
May 29, 2013
The aim of this paper is to study rumor processes in random environment. In a rumor process a signal starts from the stations of a fixed vertex (the root) and travels on a graph from vertex to vertex. We consider two rumor processes. In the firework process each station, when reached by the signal, transmits it up to a random distance. In the reverse firework process, on the other hand, stations do not send any signal but they "listen" for it up to a random distance. The firs...
January 13, 2012
Bootstrap percolation has been used effectively to model phenomena as diverse as emergence of magnetism in materials, spread of infection, diffusion of software viruses in computer networks, adoption of new technologies, and emergence of collective action and cultural fads in human societies. It is defined on an (arbitrary) network of interacting agents whose state is determined by the state of their neighbors according to a threshold rule. In a typical setting, bootstrap per...
October 9, 2015
We study a rumour model from a percolation theory and branching process point of view. The existence of a giant component is related to the event where the rumour, which started from the root of a tree, spreads out through an infinite number of its vertices. We present lower and upper bounds for the probability of that event, according to the distribution of the random variables that defines the radius of influence of each individual. We work with Galton-Watson branching tree...