May 2, 2013
Similar papers 2
April 18, 2010
We propose a method for determining which integers can be written as a sum of two integral squares for quadratic fields $\Q(\sqrt{\pm p})$, where $p$ is a prime.
August 20, 2017
In this note we construct a series of small subsets containing a non-d-th power element in a finite field by applying certain bounds on incomplete character sums. Precisely, let $h=\lfloor q^{\delta}\rfloor>1$ and $d\mid q^h-1$. Let $r$ be a prime divisor of $q-1$ such that the largest prime power part of $q-1$ has the form $r^s$. Then there is a constant $0<\epsilon<1$ such that for a ratio at least $ {q^{-\epsilon h}}$ of $\alpha\in \mathbb{F}_{q^{h}} \backslash\mathbb{F}...
February 6, 2022
Denote by $\mathcal{R}_p$ the set of all quadratic residues in $\mathbf{F}_p$ for each prime $p$. A conjecture of A. S\'ark\"ozy asserts, for all sufficiently large $p$, that no subsets $\mathcal{A},\mathcal{B}\subseteq\mathbf{F}_p$ with $|\mathcal{A}|,|\mathcal{B}|\geqslant2$ satisfy $\mathcal{A}+\mathcal{B}=\mathcal{R}_p$. In this paper, we show that if such subsets $\mathcal{A},\mathcal{B}$ do exist, then there are at least $(\log 2)^{-1}\sqrt p-1.6$ elements in $\mathcal{...
November 24, 2013
Suppose that an infinite set $A$ occupies at most $\frac{1}{2}(p+1)$ residue classes modulo $p$, for every sufficiently large prime $p$. The squares, or more generally the integer values of any quadratic, are an example of such a set. By the large sieve inequality the number of elements of $A$ that are at most $X$ is $O(X^{1/2})$, and the quadratic examples show that this is sharp. The simplest form of the inverse large sieve problem asks whether they are the only examples. W...
February 5, 2016
There exists an absolute constant $C$ with the following property. Let $A \subseteq \mathbb{F}_p$ be a set in the prime order finite field with $p$ elements. Suppose that $|A| > C p^{5/8}$. The set \[ (A \pm A)(A \pm A) = \{(a_1 \pm a_2)(a_3 \pm a_4) : a_1,a_2,a_3,a_4 \in A\} \] contains at least $p/2$ elements.
July 29, 2018
Let $\mathbb{F}_q$ be a finite field of order $q$, where $q$ is a power of a prime. For a set $A \subset \mathbb{F}_q$, under certain structural restrictions, we prove a new explicit lower bound on the size of the product set $A(A + 1)$. Our result improves on the previous best known bound due to Zhelezov and holds under more relaxed restrictions.
June 1, 2024
Let $k \geq 2$, $q$ be an odd prime power, and $F \in \mathbb{F}_q[x_1, \ldots, x_k]$ be a polynomial. An $F$-Diophantine set over a finite field $\mathbb{F}_q$ is a set $A \subset \mathbb{F}_q^*$ such that $F(a_1, a_2, \ldots, a_k)$ is a square in $\mathbb{F}_q$ whenever $a_1, a_2, \ldots, a_k$ are distinct elements in $A$. In this paper, we provide a strategy to construct a large $F$-Diophantine set, provided that $F$ has a nice property in terms of its monomial expansion. ...
July 12, 2009
Let $\mathbb{F}_p$ be the field of residue classes modulo a prime number $p$ and let $A$ be a nonempty subset of $\mathbb{F}_p$. In this paper we show that if $|A|\preceq p^{0.5}$, then \[ \max\{|A\pm A|,|AA|\}\succeq|A|^{13/12};\] if $|A|\succeq p^{0.5}$, then \[ \max\{|A\pm A|,|AA|\}\succapprox \min\{|A|^{13/12}(\frac{|A|}{p^{0.5}})^{1/12},|A|(\frac{p}{|A|})^{1/11}\}.\] These results slightly improve the estimates of Bourgain-Garaev and Shen. Sum-product estimates on differ...
November 17, 2020
Let $p$ be a large prime, and let $k\ll \log p$. A new proof of the existence of any pattern of $k$ consecutive quadratic residues and quadratic nonresidues is introduced in this note. Further, an application to the least quadratic nonresidues $n_p$ modulo $p$ shows that $n_p\ll (\log p)(\log \log p)$.
June 5, 2007
Let $\mathbb{F}_p$ be the field of a prime order $p.$ It is known that for any integer $N\in [1,p]$ one can construct a subset $A\subset\mathbb{F}_p$ with $|A|= N$ such that $$ \max\{|A+A|, |AA|\}\ll p^{1/2}|A|^{1/2}. $$ In the present paper we prove that if $A\subset \mathbb{F}_p$ with $|A|>p^{2/3},$ then $$ \max\{|A+A|, |AA|\}\gg p^{1/2}|A|^{1/2}. $$