May 2, 2013
Similar papers 2
April 18, 2010
We propose a method for determining which integers can be written as a sum of two integral squares for quadratic fields $\Q(\sqrt{\pm p})$, where $p$ is a prime.
August 20, 2017
In this note we construct a series of small subsets containing a non-d-th power element in a finite field by applying certain bounds on incomplete character sums. Precisely, let $h=\lfloor q^{\delta}\rfloor>1$ and $d\mid q^h-1$. Let $r$ be a prime divisor of $q-1$ such that the largest prime power part of $q-1$ has the form $r^s$. Then there is a constant $0<\epsilon<1$ such that for a ratio at least $ {q^{-\epsilon h}}$ of $\alpha\in \mathbb{F}_{q^{h}} \backslash\mathbb{F}...
February 6, 2022
Denote by $\mathcal{R}_p$ the set of all quadratic residues in $\mathbf{F}_p$ for each prime $p$. A conjecture of A. S\'ark\"ozy asserts, for all sufficiently large $p$, that no subsets $\mathcal{A},\mathcal{B}\subseteq\mathbf{F}_p$ with $|\mathcal{A}|,|\mathcal{B}|\geqslant2$ satisfy $\mathcal{A}+\mathcal{B}=\mathcal{R}_p$. In this paper, we show that if such subsets $\mathcal{A},\mathcal{B}$ do exist, then there are at least $(\log 2)^{-1}\sqrt p-1.6$ elements in $\mathcal{...
November 24, 2013
Suppose that an infinite set $A$ occupies at most $\frac{1}{2}(p+1)$ residue classes modulo $p$, for every sufficiently large prime $p$. The squares, or more generally the integer values of any quadratic, are an example of such a set. By the large sieve inequality the number of elements of $A$ that are at most $X$ is $O(X^{1/2})$, and the quadratic examples show that this is sharp. The simplest form of the inverse large sieve problem asks whether they are the only examples. W...
July 29, 2018
Let $\mathbb{F}_q$ be a finite field of order $q$, where $q$ is a power of a prime. For a set $A \subset \mathbb{F}_q$, under certain structural restrictions, we prove a new explicit lower bound on the size of the product set $A(A + 1)$. Our result improves on the previous best known bound due to Zhelezov and holds under more relaxed restrictions.
February 5, 2016
There exists an absolute constant $C$ with the following property. Let $A \subseteq \mathbb{F}_p$ be a set in the prime order finite field with $p$ elements. Suppose that $|A| > C p^{5/8}$. The set \[ (A \pm A)(A \pm A) = \{(a_1 \pm a_2)(a_3 \pm a_4) : a_1,a_2,a_3,a_4 \in A\} \] contains at least $p/2$ elements.
June 1, 2024
Let $k \geq 2$, $q$ be an odd prime power, and $F \in \mathbb{F}_q[x_1, \ldots, x_k]$ be a polynomial. An $F$-Diophantine set over a finite field $\mathbb{F}_q$ is a set $A \subset \mathbb{F}_q^*$ such that $F(a_1, a_2, \ldots, a_k)$ is a square in $\mathbb{F}_q$ whenever $a_1, a_2, \ldots, a_k$ are distinct elements in $A$. In this paper, we provide a strategy to construct a large $F$-Diophantine set, provided that $F$ has a nice property in terms of its monomial expansion. ...
July 12, 2009
Let $\mathbb{F}_p$ be the field of residue classes modulo a prime number $p$ and let $A$ be a nonempty subset of $\mathbb{F}_p$. In this paper we show that if $|A|\preceq p^{0.5}$, then \[ \max\{|A\pm A|,|AA|\}\succeq|A|^{13/12};\] if $|A|\succeq p^{0.5}$, then \[ \max\{|A\pm A|,|AA|\}\succapprox \min\{|A|^{13/12}(\frac{|A|}{p^{0.5}})^{1/12},|A|(\frac{p}{|A|})^{1/11}\}.\] These results slightly improve the estimates of Bourgain-Garaev and Shen. Sum-product estimates on differ...
November 17, 2020
Let $p$ be a large prime, and let $k\ll \log p$. A new proof of the existence of any pattern of $k$ consecutive quadratic residues and quadratic nonresidues is introduced in this note. Further, an application to the least quadratic nonresidues $n_p$ modulo $p$ shows that $n_p\ll (\log p)(\log \log p)$.
January 20, 2025
Let $\eta_{g}(n) $ be the smallest cardinality that $A\subseteq {\mathbb Z}$ can have if $A$ is a $g$-difference basis for $[n]$ (i.e, if, for each $x\in [n]$, there are {\em at least} $g$ solutions to $a_{1}-a_{2}=x$ ). We prove that the finite, non-zero limit $\lim\limits_{n\rightarrow \infty}\frac{\eta_{g}(n)}{\sqrt{n}}$ exists, answering a question of Kravitz. We also investigate a similar problem in the setting of a vector space over a finite field. Let $\alpha_g(n)$ b...