June 13, 2013
Directional and pairwise measurements are often used to model inter-relationships in a social network setting. The Mixed-Membership Stochastic Blockmodel (MMSB) was a seminal work in this area, and many of its capabilities were extended since then. In this paper, we propose the \emph{Dynamic Infinite Mixed-Membership stochastic blockModel (DIM3)}, a generalised framework that extends the existing work to a potentially infinite number of communities and mixture memberships for each of the network's nodes. This model is in a dynamic setting, where additional model parameters are introduced to reflect the degree of persistence between one's memberships at consecutive times. Accordingly, two effective posterior sampling strategies and their results are presented using both synthetic and real data.
Similar papers 1
April 12, 2023
Most real-world networks evolve over time. Existing literature proposes models for dynamic networks that are either unlabeled or assumed to have a single membership structure. On the other hand, a new family of Mixed Membership Stochastic Block Models (MMSBM) allows to model static labeled networks under the assumption of mixed-membership clustering. In this work, we propose to extend this later class of models to infer dynamic labeled networks under a mixed membership assump...
October 9, 2010
Actors in realistic social networks play not one but a number of diverse roles depending on whom they interact with, and a large number of such role-specific interactions collectively determine social communities and their organizations. Methods for analyzing social networks should capture these multi-faceted role-specific interactions, and, more interestingly, discover the latent organization or hierarchy of social communities. We propose a hierarchical Mixed Membership Stoc...
November 19, 2014
There has been great interest in recent years on statistical models for dynamic networks. In this paper, I propose a stochastic block transition model (SBTM) for dynamic networks that is inspired by the well-known stochastic block model (SBM) for static networks and previous dynamic extensions of the SBM. Unlike most existing dynamic network models, it does not make a hidden Markov assumption on the edge-level dynamics, allowing the presence or absence of edges to directly in...
December 7, 2013
Many kinds of data can be represented as a network or graph. It is crucial to infer the latent structure underlying such a network and to predict unobserved links in the network. Mixed Membership Stochastic Blockmodel (MMSB) is a promising model for network data. Latent variables and unknown parameters in MMSB have been estimated through Bayesian inference with the entire network; however, it is important to estimate them online for evolving networks. In this paper, we first ...
May 25, 2017
A nonparametric approach to the modeling of social networks using degree-corrected stochastic blockmodels is proposed. The model for static network consists of a stochastic blockmodel using a probit regression formulation and popularity parameters are incorporated to account for degree heterogeneity. Dirichlet processes are used to detect community structure as well as induce clustering in the popularity parameters. This approach is flexible yet parsimonious as it allows the ...
March 4, 2014
Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recent interest in statistical modeling of dynamic networks, which are observed at multiple points in time and offer a richer representation of many complex phenomena. In this paper, we...
May 19, 2020
Mixture models are probabilistic models aimed at uncovering and representing latent subgroups within a population. In the realm of network data analysis, the latent subgroups of nodes are typically identified by their connectivity behaviour, with nodes behaving similarly belonging to the same community. In this context, mixture modelling is pursued through stochastic blockmodelling. We consider stochastic blockmodels and some of their variants and extensions from a mixture mo...
November 4, 2019
Networks are useful representations of many systems with interacting entities, such as social, biological and physical systems. Characterizing the meso-scale organization, i.e. the community structure, is an important problem in network science. Community detection aims to partition the network into sets of nodes that are densely connected internally but sparsely connected to other dense sets of nodes. Current work on community detection mostly focuses on static networks. How...
April 22, 2013
Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recent interest in statistical modeling of dynamic networks, which are observed at multiple points in time and offer a richer representation of many complex phenomena. In this paper, we...
May 31, 2007
Observations consisting of measurements on relationships for pairs of objects arise in many settings, such as protein interaction and gene regulatory networks, collections of author-recipient email, and social networks. Analyzing such data with probabilisic models can be delicate because the simple exchangeability assumptions underlying many boilerplate models no longer hold. In this paper, we describe a latent variable model of such data called the mixed membership stochasti...