June 16, 2013
Similar papers 5
April 27, 2018
The interplay of symmetry, topology, and many-body effects in the classification of possible phases of matter poses a formidable challenge that is attracting great attention in condensed-matter physics. Such many-body effects are typically induced by inter-particle interactions involving an action at a distance, such as the Coulomb interaction between electrons in a symmetry-protected topological (SPT) phase. In this work, we show that similar phenomena also appear in high-en...
November 30, 2017
We introduce a web of strongly correlated interacting 3+1D topological superconductors/insulators of 10 particular global symmetry groups of Cartan classes, realizable in electronic condensed matter systems, and their new SU(N) generalizations. The symmetries include SU(N), SU(2), U(1), fermion parity, time reversal and relate to each other through symmetry embeddings. We overview the lattice Hamiltonian formalism. We complete the list of field theories of bulk symmetry-prote...
November 8, 2024
We investigate (3+1)d topological orders in fermionic systems with an anomalous $\mathbb{Z}_{2N}^{\mathrm{F}}$ symmetry, where its $\mathbb{Z}_2^{\mathrm{F}}$ subgroup is the fermion parity. Such an anomalous symmetry arises as the discrete subgroup of the chiral U(1) symmetry of $\nu$ copies of Weyl fermions of the same chirality. Guided by the crystalline correspondence principle, we construct (3+1)d symmetry-preserving gapped states on the boundary of a closely related (4+...
January 5, 2013
Symmetry protected topological (SPT) states are bulk gapped states with gapless edge excitations protected by certain symmetries. The SPT phases in free fermion systems, like topological insulators, can be classified by the K-theory. However, it is not known what SPT phases exist in general interacting systems. In this paper, we present a systematic way to construct SPT phases in interacting bosonic systems, which allows us to identify many new SPT phases, including three bos...
November 2, 2022
Where in the landscape of many-body phases of matter do we place the Higgs condensate of a gauge theory? On the one hand, the Higgs phase is gapped, has no local order parameter, and for fundamental Higgs fields is adiabatically connected to the confined phase. On the other hand, Higgs phases such as superconductors display rich phenomenology. In this work, we propose a minimal description of the Higgs phase as a symmetry-protected topological (SPT) phase, utilizing conventio...
September 4, 2016
While two-dimensional symmetry-enriched topological phases ($\mathsf{SET}$s) have been studied intensively and systematically, three-dimensional ones are still open issues. We propose an algorithmic approach of imposing global symmetry $G_s$ on gauge theories (denoted by $\mathsf{GT}$) with gauge group $G_g$. The resulting symmetric gauge theories are dubbed "symmetry-enriched gauge theories" ($\mathsf{SEG}$), which may be served as low-energy effective theories of three-dime...
June 6, 2017
We uncover an infinite family of time-reversal symmetric 3d interacting topological insulators of bosons or spins, in time-periodically driven systems, which we term Floquet topological paramagnets (FTPMs). These FTPM phases exhibit intrinsically dynamical properties that could not occur in thermal equilibrium, and are governed by an infinite set of $Z_2$-valued topological invariants, one for each prime number. The topological invariants are physically characterized by surfa...
November 1, 2018
The classification and lattice model construction of symmetry protected topological (SPT) phases in interacting fermion systems are very interesting but challenging. In this paper, we give a systematic fixed point wave function construction of fermionic SPT (FSPT) states for generic fermionic symmetry group $G_f=\mathbb{Z}_2^f \times_{\omega_2} G_b$ which is a central extension of bosonic symmetry group $G_b$ (may contain time reversal symmetry) by the fermion parity symmetry...
March 20, 2014
The boundary of symmetry-protected topological states (SPTs) can harbor new quantum anomaly phenomena. In this work, we characterize the bosonic anomalies introduced by the 1+1D non-onsite-symmetric gapless edge modes of 2+1D bulk bosonic SPTs with a generic finite Abelian group symmetry (isomorphic to $G=\prod_i Z_{N_i}=Z_{N_1} \times Z_{N_2} \times Z_{N_3} \times ...$). We demonstrate that some classes of SPTs (termed "Type II") trap fractional quantum numbers (such as frac...
December 31, 2018
We formulate a family of spin Topological Quantum Filed Theories (spin-TQFTs) as fermionic generalization of bosonic Dijkgraaf-Witten TQFTs. They are obtained by gauging $G$-equivariant invertible spin-TQFTs, or, in physics language, gauging the interacting fermionic Symmetry Protected Topological states (SPTs) with a finite group $G$ symmetry. We use the fact that the latter are classified by Pontryagin duals to spin-bordism groups of the classifying space $BG$. We also cons...