July 8, 2013
Network topology plays a key role in many phenomena, from the spreading of diseases to that of financial crises. Whenever the whole structure of a network is unknown, one must resort to reconstruction methods that identify the least biased ensemble of networks consistent with the partial information available. A challenging case, frequently encountered due to privacy issues in the analysis of interbank flows and Big Data, is when there is only local (node-specific) aggregate information available. For binary networks, the relevant ensemble is one where the degree (number of links) of each node is constrained to its observed value. However, for weighted networks the problem is much more complicated. While the naive approach prescribes to constrain the strengths (total link weights) of all nodes, recent counter-intuitive results suggest that in weighted networks the degrees are often more informative than the strengths. This implies that the reconstruction of weighted networks would be significantly enhanced by the specification of both strengths and degrees, a computationally hard and bias-prone procedure. Here we solve this problem by introducing an analytical and unbiased maximum-entropy method that works in the shortest possible time and does not require the explicit generation of reconstructed samples. We consider several real-world examples and show that, while the strengths alone give poor results, the additional knowledge of the degrees yields accurately reconstructed networks. Information-theoretic criteria rigorously confirm that the degree sequence, as soon as it is non-trivial, is irreducible to the strength sequence. Our results have strong implications for the analysis of motifs and communities and whenever the reconstructed ensemble is required as a null model to detect higher-order patterns.
Similar papers 1
September 22, 2014
A fundamental problem in studying and modeling economic and financial systems is represented by privacy issues, which put severe limitations on the amount of accessible information. Here we introduce a novel, highly nontrivial method to reconstruct the structural properties of complex weighted networks of this kind using only partial information: the total number of nodes and links, and the values of the strength for all nodes. The latter are used as fitness to estimate the u...
October 18, 2016
Reconstructing weighted networks from partial information is necessary in many important circumstances, e.g. for a correct estimation of systemic risk. It has been shown that, in order to achieve an accurate reconstruction, it is crucial to reliably replicate the empirical degree sequence, which is however unknown in many realistic situations. More recently, it has been found that the knowledge of the degree sequence can be replaced by the knowledge of the strength sequence, ...
November 24, 2018
Due to the interconnectedness of financial entities, estimating certain key properties of a complex financial system (e.g. the implied level of systemic risk) requires detailed information about the structure of the underlying network. However, since data about financial linkages are typically subject to confidentiality, network reconstruction techniques become necessary to infer both the presence of connections and their intensity. Recently, several "horse races" have been c...
November 27, 2014
We address a fundamental problem that is systematically encountered when modeling complex systems: the limitedness of the information available. In the case of economic and financial networks, privacy issues severely limit the information that can be accessed and, as a consequence, the possibility of correctly estimating the resilience of these systems to events such as financial shocks, crises and cascade failures. Here we present an innovative method to reconstruct the stru...
June 18, 2018
When studying social, economic and biological systems, one has often access to only limited information about the structure of the underlying networks. An example of paramount importance is provided by financial systems: information on the interconnections between financial institutions is privacy-protected, dramatically reducing the possibility of correctly estimating crucial systemic properties such as the resilience to the propagation of shocks. The need to compensate for ...
June 4, 2014
Sampling random graphs with given properties is a key step in the analysis of networks, as random ensembles represent basic null models required to identify patterns such as communities and motifs. An important requirement is that the sampling process is unbiased and efficient. The main approaches are microcanonical, i.e. they sample graphs that match the enforced constraints exactly. Unfortunately, when applied to strongly heterogeneous networks (like most real-world example...
September 4, 2015
Complex network null models based on entropy maximization are becoming a powerful tool to characterize and analyze data from real systems. However, it is not easy to extract good and unbiased information from these models: A proper understanding of the nature of the underlying events represented in them is crucial. In this paper we emphasize this fact stressing how an accurate counting of configurations compatible with given constraints is fundamental to build good null model...
July 17, 2018
When the network is reconstructed, two types of errors can occur: false positive and false negative errors about the presence or absence of links. In this paper, the influence of these two errors on the vertex degree distribution is analytically analysed. Moreover, an analytic formula of the density of the biased vertex degree distribution is found. In the inverse problem, we find a reliable procedure to reconstruct analytically the density of the vertex degree distribution o...
September 28, 2011
In this paper we estimate the propagation of liquidity shocks through interbank markets when the information about the underlying credit network is incomplete. We show that techniques such as Maximum Entropy currently used to reconstruct credit networks severely underestimate the risk of contagion by assuming a trivial (fully connected) topology, a type of network structure which can be very different from the one empirically observed. We propose an efficient message-passing ...
September 3, 2019
To capture the systemic complexity of international financial systems, network data is an important prerequisite. However, dyadic data is often not available, raising the need for methods that allow for reconstructing networks based on limited information. In this paper, we are reviewing different methods that are designed for the estimation of matrices from their marginals and potentially exogenous information. This includes a general discussion of the available methodology ...