July 29, 2013
We consider three distinct and well studied problems concerning network structure: community detection by modularity maximization, community detection by statistical inference, and normalized-cut graph partitioning. Each of these problems can be tackled using spectral algorithms that make use of the eigenvectors of matrix representations of the network. We show that with certain choices of the free parameters appearing in these spectral algorithms the algorithms for all three problems are, in fact, identical, and hence that, at least within the spectral approximations used here, there is no difference between the modularity- and inference-based community detection methods, or between either and graph partitioning.
Similar papers 1
May 21, 2013
Many methods have been proposed for community detection in networks. Some of the most promising are methods based on statistical inference, which rest on solid mathematical foundations and return excellent results in practice. In this paper we show that two of the most widely used inference methods can be mapped directly onto versions of the standard minimum-cut graph partitioning problem, which allows us to apply any of the many well-understood partitioning algorithms to the...
February 17, 2006
Many networks of interest in the sciences, including a variety of social and biological networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure has attracted considerable recent attention. One of the most sensitive detection methods is optimization of the quality function known as "modularity" over the possible divisions of a network, but direct application of this method using, for instance, si...
May 10, 2006
We consider the problem of detecting communities or modules in networks, groups of vertices with a higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as "modularity" over possible divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in commun...
April 8, 2005
We review and improve a recently introduced method for the detection of communities in complex networks. This method combines spectral properties of some matrices encoding the network topology, with well known hierarchical clustering techniques, and the use of the modularity parameter to quantify the goodness of any possible community subdivision. This provides one of the best available methods for the detection of community structures in complex systems.
April 27, 2004
An efficient and relatively fast algorithm for the detection of communities in complex networks is introduced. The method exploits spectral properties of the graph Laplacian-matrix combined with hierarchical-clustering techniques, and includes a procedure to maximize the ``modularity'' of the output. Its performance is compared with that of other existing methods, as applied to different well-known instances of complex networks with a community-structure: both computer-genera...
June 22, 2015
One of the most widely used methods for community detection in networks is the maximization of the quality function known as modularity. Of the many maximization techniques that have been used in this context, some of the most conceptually attractive are the spectral methods, which are based on the eigenvectors of the modularity matrix. Spectral algorithms have, however, been limited by and large to the division of networks into only two or three communities, with divisions i...
June 3, 2009
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, p...
December 29, 2014
We present a fast spectral algorithm for community detection in complex networks. Our method searches for the partition with the maximum value of the modularity via the interplay of several refinement steps that include both agglomeration and division. We validate the accuracy of the algorithm by applying it to several real-world benchmark networks. On all these, our algorithm performs as well or better than any other known polynomial scheme. This allows us to extensively stu...
October 20, 2010
Spectral analysis has been successfully applied at the detection of community structure of networks, respectively being based on the adjacency matrix, the standard Laplacian matrix, the normalized Laplacian matrix, the modularity matrix, the correlation matrix and several other variants of these matrices. However, the comparison between these spectral methods is less reported. More importantly, it is still unclear which matrix is more appropriate for the detection of communit...
May 31, 2014
Community detection is one of the fundamental problems of network analysis, for which a number of methods have been proposed. Most model-based or criteria-based methods have to solve an optimization problem over a discrete set of labels to find communities, which is computationally infeasible. Some fast spectral algorithms have been proposed for specific methods or models, but only on a case-by-case basis. Here we propose a general approach for maximizing a function of a netw...