November 12, 2013
Similar papers 3
January 15, 2019
Discovering low-dimensional structure in real-world networks requires a suitable null model that defines the absence of meaningful structure. Here we introduce a spectral approach for detecting a network's low-dimensional structure, and the nodes that participate in it, using any null model. We use generative models to estimate the expected eigenvalue distribution under a specified null model, and then detect where the data network's eigenspectra exceed the estimated bounds. ...
December 10, 2014
Community detection is a fundamental problem in network analysis which is made more challenging by overlaps between communities which often occur in practice. Here we propose a general, flexible, and interpretable generative model for overlapping communities, which can be thought of as a generalization of the degree-corrected stochastic block model. We develop an efficient spectral algorithm for estimating the community memberships, which deals with the overlaps by employing ...
August 30, 2017
The community detection problem for graphs asks one to partition the n vertices V of a graph G into k communities, or clusters, such that there are many intracluster edges and few intercluster edges. Of course this is equivalent to finding a permutation matrix P such that, if A denotes the adjacency matrix of G, then PAP^T is approximately block diagonal. As there are k^n possible partitions of n vertices into k subsets, directly determining the optimal clustering is clearly ...
November 6, 2014
The stochastic block model and its variants have been a popular tool in analyzing large network data with community structures. In this paper we develop an efficient network cross-validation (NCV) approach to determine the number of communities, as well as to choose between the regular stochastic block model and the degree corrected block model. The proposed NCV method is based on a block-wise node-pair splitting technique, combined with an integrated step of community recove...
March 2, 2015
New phase transition phenomena have recently been discovered for the stochastic block model, for the special case of two non-overlapping symmetric communities. This gives raise in particular to new algorithmic challenges driven by the thresholds. This paper investigates whether a general phenomenon takes place for multiple communities, without imposing symmetry. In the general stochastic block model $\text{SBM}(n,p,Q)$, $n$ vertices are split into $k$ communities of relativ...
December 23, 2014
We consider the problem of community detection in the Stochastic Block Model with a finite number $K$ of communities of sizes linearly growing with the network size $n$. This model consists in a random graph such that each pair of vertices is connected independently with probability $p$ within communities and $q$ across communities. One observes a realization of this random graph, and the objective is to reconstruct the communities from this observation. We show that under sp...
June 1, 2023
Hierarchical clustering of networks consists in finding a tree of communities, such that lower levels of the hierarchy reveal finer-grained community structures. There are two main classes of algorithms tackling this problem. Divisive ($\textit{top-down}$) algorithms recursively partition the nodes into two communities, until a stopping rule indicates that no further split is needed. In contrast, agglomerative ($\textit{bottom-up}$) algorithms first identify the smallest comm...
August 4, 2013
A common and important problem arising in the study of networks is how to divide the vertices of a given network into one or more groups, called communities, in such a way that vertices of the same community are more interconnected than vertices belonging to different ones. We propose and investigate a testing based community detection procedure called Extraction of Statistically Significant Communities (ESSC). The ESSC procedure is based on $p$-values for the strength of con...
January 20, 2020
Spectral clustering has been one of the widely used methods for community detection in networks. However, large-scale networks bring computational challenges to the eigenvalue decomposition therein. In this paper, we study the spectral clustering using randomized sketching algorithms from a statistical perspective, where we typically assume the network data are generated from a stochastic block model that is not necessarily of full rank. To do this, we first use the recently ...
January 23, 2023
Spectral clustering has been widely used for community detection in network sciences. While its empirical successes are well-documented, a clear theoretical understanding, particularly for sparse networks where degrees are much smaller than $\log n$, remains unclear. In this paper, we address this significant gap by demonstrating that spectral clustering offers exponentially small error rates when applied to sparse networks under Stochastic Block Models. Our analysis provides...