November 30, 2016
For fixed $r\geq 2$, we consider bootstrap percolation with threshold $r$ on the Erd\H{o}s-R\'enyi graph ${\cal G}_{n,p}$. We identify a threshold for $p$ above which there is with high probability a set of size $r$ which can infect the entire graph. This improves a result of Feige, Krivelevich and Reichman, which gives bounds for this threshold, up to multiplicative constants. As an application of our results, we also obtain an upper bound for the threshold for $K_4$-boots...
June 12, 2002
In the bootstrap percolation model, sites in an $L$ by $L$ square are initially independently declared active with probability $p$. At each time step, an inactive site becomes active if at least two of its four neighbours are active. We study the behaviour as $p \to 0$ and $L \to \infty$ simultaneously of the probability $I(L,p)$ that the entire square is eventually active. We prove that $I(L,p) \to 1$ if $\liminf p \log L > \lambda$, and $I(L,p) \to 0$ if $\limsup p \log L <...
March 9, 2021
We consider an inhomogeneous oriented percolation model introduced by de Lima, Rolla and Valesin. In this model, the underlying graph is an oriented rooted tree in which each vertex points to each of its $d$ children with `short' edges, and in addition, each vertex points to each of its $d^k$ descendant at a fixed distance $k$ with `long' edges. A bond percolation process is then considered on this graph, with the prescription that independently, short edges are open with pro...
May 23, 2013
We study the distribution of the percolation time $T$ of two-neighbour bootstrap percolation on $[n]^2$ with initial set $A\sim\mathrm{Bin}([n]^2,p)$. We determine $T$ with high probability up to a constant factor for all $p$ above the critical probability for percolation, and to within a $1+o(1)$ factor for a large range of $p$.
July 26, 2018
Bootstrap percolation on a graph is a deterministic process that iteratively enlarges a set of occupied sites by adjoining points with at least $\theta$ occupied neighbors. The initially occupied set is random, given by a uniform product measure with a low density $p$. Our main focus is on this process on the product graph $\mathbb{Z}^2\times K_n^2$, where $K_n$ is a complete graph. We investigate how $p$ scales with $n$ so that a typical site is eventually occupied. Under cr...
April 10, 2008
We study the random graph obtained by random deletion of vertices or edges from a random graph with given vertex degrees. A simple trick of exploding vertices instead of deleting them, enables us to derive results from known results for random graphs with given vertex degrees. This is used to study existence of giant component and existence of k-core. As a variation of the latter, we study also bootstrap percolation in random regular graphs. We obtain both simple new proofs...
March 28, 2015
Consider the following model of strong-majority bootstrap percolation on a graph. Let r be some positive integer, and p in [0,1]. Initially, every vertex is active with probability p, independently from all other vertices. Then, at every step of the process, each vertex v of degree deg(v) becomes active if at least (deg(v)+r)/2 of its neighbours are active. Given any arbitrarily small p>0 and any integer r, we construct a family of d=d(p,r)-regular graphs such that with high ...
June 19, 2024
In the random $r$-neighbour bootstrap percolation process on a graph $G$, a set of initially infected vertices is chosen at random by retaining each vertex of $G$ independently with probability $p\in (0,1)$, and "healthy" vertices get infected in subsequent rounds if they have at least $r$ infected neighbours. A graph $G$ \emph{percolates} if every vertex becomes eventually infected. A central problem in this process is to determine the critical probability $p_c(G,r)$, at whi...
May 9, 2007
In the bootstrap percolation model, sites in an L by L square are initially infected independently with probability p. At subsequent steps, a healthy site becomes infected if it has at least 2 infected neighbours. As (L,p)->(infinity,0), the probability that the entire square is eventually infected is known to undergo a phase transition in the parameter p log L, occurring asymptotically at lambda = pi^2/18. We prove that the discrepancy between the critical parameter and its ...
July 29, 2024
Every realistic instance of a percolation problem is faced with some degree of polydispersity, e.g., the pore size distribution of an inhomogeneous medium, the size distribution of filler particles in composite materials, or the vertex degree of agents in a community network. Such polydispersity is a welcome, because simple to perform, generalization of many theoretical approaches deployed to predict percolation thresholds. These theoretical studies independently found very s...