ID: 1403.0921

Dynamic stochastic blockmodels for time-evolving social networks

March 4, 2014

View on ArXiv
Kevin S. Xu, Alfred O. III Hero
Computer Science
Physics
Statistics
Social and Information Netwo...
Machine Learning
Physics and Society
Methodology

Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recent interest in statistical modeling of dynamic networks, which are observed at multiple points in time and offer a richer representation of many complex phenomena. In this paper, we present a state-space model for dynamic networks that extends the well-known stochastic blockmodel for static networks to the dynamic setting. We fit the model in a near-optimal manner using an extended Kalman filter (EKF) augmented with a local search. We demonstrate that the EKF-based algorithm performs competitively with a state-of-the-art algorithm based on Markov chain Monte Carlo sampling but is significantly less computationally demanding.

Similar papers 1