March 4, 2014
Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recent interest in statistical modeling of dynamic networks, which are observed at multiple points in time and offer a richer representation of many complex phenomena. In this paper, we present a state-space model for dynamic networks that extends the well-known stochastic blockmodel for static networks to the dynamic setting. We fit the model in a near-optimal manner using an extended Kalman filter (EKF) augmented with a local search. We demonstrate that the EKF-based algorithm performs competitively with a state-of-the-art algorithm based on Markov chain Monte Carlo sampling but is significantly less computationally demanding.
Similar papers 1
April 22, 2013
Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recent interest in statistical modeling of dynamic networks, which are observed at multiple points in time and offer a richer representation of many complex phenomena. In this paper, we...
November 19, 2014
There has been great interest in recent years on statistical models for dynamic networks. In this paper, I propose a stochastic block transition model (SBTM) for dynamic networks that is inspired by the well-known stochastic block model (SBM) for static networks and previous dynamic extensions of the SBM. Unlike most existing dynamic network models, it does not make a hidden Markov assumption on the edge-level dynamics, allowing the presence or absence of edges to directly in...
February 5, 2017
Latent stochastic block models are flexible statistical models that are widely used in social network analysis. In recent years, efforts have been made to extend these models to temporal dynamic networks, whereby the connections between nodes are observed at a number of different times. In this paper we extend the original stochastic block model by using a Markovian property to describe the evolution of nodes' cluster memberships over time. We recast the problem of clustering...
November 13, 2017
We present a selective review of statistical modeling of dynamic networks. We focus on models with latent variables, specifically, the latent space models and the latent class models (or stochastic blockmodels), which investigate both the observed features and the unobserved structure of networks. We begin with an overview of the static models, and then we introduce the dynamic extensions. For each dynamic model, we also discuss its applications that have been studied in the ...
December 7, 2013
Many kinds of data can be represented as a network or graph. It is crucial to infer the latent structure underlying such a network and to predict unobserved links in the network. Mixed Membership Stochastic Blockmodel (MMSB) is a promising model for network data. Latent variables and unknown parameters in MMSB have been estimated through Bayesian inference with the entire network; however, it is important to estimate them online for evolving networks. In this paper, we first ...
October 10, 2017
The latent stochastic block model is a flexible and widely used statistical model for the analysis of network data. Extensions of this model to a dynamic context often fail to capture the persistence of edges in contiguous network snapshots. The recently introduced stochastic block transition model addresses precisely this issue, by modelling the probabilities of creating a new edge and of maintaining an edge over time. Using a model-based clustering approach, this paper illu...
May 25, 2017
A nonparametric approach to the modeling of social networks using degree-corrected stochastic blockmodels is proposed. The model for static network consists of a stochastic blockmodel using a probit regression formulation and popularity parameters are incorporated to account for degree heterogeneity. Dirichlet processes are used to detect community structure as well as induce clustering in the popularity parameters. This approach is flexible yet parsimonious as it allows the ...
July 25, 2017
Dynamic networks, especially those representing social networks, undergo constant evolution of their community structure over time. Nodes can migrate between different communities, communities can split into multiple new communities, communities can merge together, etc. In order to represent dynamic networks with evolving communities it is essential to use a dynamic model rather than a static one. Here we use a dynamic stochastic block model where the underlying block model i...
July 26, 2016
We propose generalizations of a number of standard network models, including the classic random graph, the configuration model, and the stochastic block model, to the case of time-varying networks. We assume that the presence and absence of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. In addition to computing equilibrium properties of these models, we demonstrate their use in data analysis and statisti...
June 24, 2015
Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model (SBM) for its static part with independent Markov chains for the evolution of the nodes groups through time. We model binary data as well as weighted dynamic random graphs (with discrete or continuous edges values). Our approach, motivated by the impor...