ID: 1403.5884

Entropy distribution and condensation in random networks with a given degree distribution

March 24, 2014

View on ArXiv
Kartik Anand, Dimitri Krioukov, Ginestra Bianconi
Condensed Matter
Physics
Disordered Systems and Neura...
Statistical Mechanics
Physics and Society

The entropy of network ensembles characterizes the amount of information encoded in the network structure, and can be used to quantify network complexity, and the relevance of given structural properties observed in real network datasets with respect to a random hypothesis. In many real networks the degrees of individual nodes are not fixed but change in time, while their statistical properties, such as the degree distribution, are preserved. Here we characterize the distribution of entropy of random networks with given degree sequences, where each degree sequence is drawn randomly from a given degree distribution. We show that the leading term of the entropy of scale-free network ensembles depends only on the network size and average degree, and that entropy is self-averaging, meaning that its relative variance vanishes in the thermodynamic limit. We also characterize large fluctuations of entropy that are fully determined by the average degree in the network. Finally, above a certain threshold, large fluctuations of the average degree in the ensemble can lead to condensation, meaning that a single node in a network of size~$N$ can attract $O(N)$ links.

Similar papers 1

The entropy of network ensembles

February 20, 2008

91% Match
Ginestra Bianconi
Disordered Systems and Neura...
Statistical Mechanics

In this paper we generalize the concept of random networks to describe networks with non trivial features by a statistical mechanics approach. This framework is able to describe ensembles of undirected, directed as well as weighted networks. These networks might have not trivial community structure or, in the case of networks embedded in a given space, non trivial distance dependence of the link probability. These ensembles are characterized by their entropy which evaluate th...

Find SimilarView on arXiv

The entropy of randomized network ensembles

August 1, 2007

91% Match
Ginestra Bianconi
Disordered Systems and Neura...
Statistical Mechanics

Randomized network ensembles are the null models of real networks and are extensivelly used to compare a real system to a null hypothesis. In this paper we study network ensembles with the same degree distribution, the same degree-correlations or the same community structure of any given real network. We characterize these randomized network ensembles by their entropy, i.e. the normalized logarithm of the total number of networks which are part of these ensembles. We estima...

Find SimilarView on arXiv

A statistical mechanics approach for scale-free networks and finite-scale networks

March 7, 2007

91% Match
Ginestra Bianconi
Disordered Systems and Neura...
Statistical Mechanics

We present a statistical mechanics approach for the description of complex networks. We first define an energy and an entropy associated to a degree distribution which have a geometrical interpretation. Next we evaluate the distribution which extremize the free energy of the network. We find two important limiting cases: a scale-free degree distribution and a finite-scale degree distribution. The size of the space of allowed simple networks given these distribution is evaluat...

Find SimilarView on arXiv

Degree distribution of complex networks from statistical mechanics principles

June 14, 2006

90% Match
Ginestra Bianconi
Statistical Mechanics
Disordered Systems and Neura...

In this paper we describe the emergence of scale-free degree distributions from statistical mechanics principles. We define an energy associated to a degree sequence as the logarithm of the number of indistinguishable simple networks it is possible to draw given the degree sequence. Keeping fixed the total number of nodes and links, we show that the energy of scale-free distribution is much higher than the energy associated to the degree sequence of regular random graphs. Thi...

Find SimilarView on arXiv

Entropy of random graph ensembles constrained with generalised degrees

September 14, 2013

90% Match
Ekaterina S. Roberts, Anthonius C. C. Coolen
Disordered Systems and Neura...

Generalised degrees provide a natural bridge between local and global topological properties of networks. We define the generalised degree to be the number of neighbours of a node within one and two steps respectively. Tailored random graph ensembles are used to quantify and compare topological properties of networks in a systematic and precise manner, using concepts from information theory. We calculate the Shannon entropy of random graph ensembles constrained with a specifi...

Find SimilarView on arXiv

Condensation of degrees emerging through a first-order phase transition in classical random graphs

April 20, 2019

89% Match
Fernando L. Metz, Isaac Pérez Castillo
Disordered Systems and Neura...
Statistical Mechanics
Physics and Society

Due to their conceptual and mathematical simplicity, Erd\"os-R\'enyi or classical random graphs remain as a fundamental paradigm to model complex interacting systems in several areas. Although condensation phenomena have been widely considered in complex network theory, the condensation of degrees has hitherto eluded a careful study. Here we show that the degree statistics of the classical random graph model undergoes a first-order phase transition between a Poisson-like dist...

Find SimilarView on arXiv

Tailored graph ensembles as proxies or null models for real networks I: tools for quantifying structure

August 12, 2009

89% Match
A. Annibale, A. C. C. Coolen, L. P. Fernandes, ... , Kleinjung J.
Disordered Systems and Neura...

We study the tailoring of structured random graph ensembles to real networks, with the objective of generating precise and practical mathematical tools for quantifying and comparing network topologies macroscopically, beyond the level of degree statistics. Our family of ensembles can produce graphs with any prescribed degree distribution and any degree-degree correlation function, its control parameters can be calculated fully analytically, and as a result we can calculate (a...

Find SimilarView on arXiv

Fluctuation-dissipation relations for complex networks

September 1, 2005

89% Match
Agata Fronczak, Piotr Fronczak, Janusz A. Holyst
Disordered Systems and Neura...
Statistical Mechanics

In the paper, we study fluctuations over several ensembles of maximum-entropy random networks. We derive several fluctuation-dissipation relations characterizing susceptibilities of different networks to changes in external fields. In the case of networks with a given degree sequence, we argue that the scale-free topologies of real-world networks may arise as a result of self-organization of real systems into sparse structures with low susceptibility to random external pertur...

Find SimilarView on arXiv

Maximal entropy random networks with given degree distribution

June 10, 2002

88% Match
M. Bauer, D. Bernard
Disordered Systems and Neura...
Statistical Mechanics

Using a maximum entropy principle to assign a statistical weight to any graph, we introduce a model of random graphs with arbitrary degree distribution in the framework of standard statistical mechanics. We compute the free energy and the distribution of connected components. We determine the size of the percolation cluster above the percolation threshold. The conditional degree distribution on the percolation cluster is also given. We briefly present the analogous discussion...

Find SimilarView on arXiv

Principles of statistical mechanics of random networks

April 4, 2002

88% Match
S. N. Dorogovtsev, J. F. F. Mendes, A. N. Samukhin
Statistical Mechanics
Networking and Internet Arch...
Mathematical Physics
Adaptation and Self-Organizi...

We develop a statistical mechanics approach for random networks with uncorrelated vertices. We construct equilibrium statistical ensembles of such networks and obtain their partition functions and main characteristics. We find simple dynamical construction procedures that produce equilibrium uncorrelated random graphs with an arbitrary degree distribution. In particular, we show that in equilibrium uncorrelated networks, fat-tailed degree distributions may exist only starting...

Find SimilarView on arXiv