June 16, 2024
We recognise that an entropy inequality akin to the main intermediate goal of recent works (Gowers, Green, Manners, Tao [3],[2]) regarding a conjecture of Marton provides a black box from which we can also through a short deduction recover another description: if a finite subset $A$ of an abelian group $G$ is such that the distribution of the sums $a+b$ with $(a,b) \in A \times A$ is only slightly more spread out than the uniform distribution on $A$, then $A$ has small symmet...
January 31, 2013
Let A be a subset of a group G = (G,.). We will survey the theory of sets A with the property that |A.A| <= K|A|, where A.A = {a_1 a_2 : a_1, a_2 in A}. The case G = (Z,+) is the famous Freiman--Ruzsa theorem.
June 23, 2023
The entropic doubling $\sigma_{\operatorname{ent}}[X]$ of a random variable $X$ taking values in an abelian group $G$ is a variant of the notion of the doubling constant $\sigma[A]$ of a finite subset $A$ of $G$, but it enjoys somewhat better properties; for instance, it contracts upon applying a homomorphism. In this paper we develop further the theory of entropic doubling and give various applications, including: (1) A new proof of a result of P\'alv\"olgyi and Zhelezov...
August 21, 2020
We determine the structure of a finite subset $A$ of an abelian group given that $|2A|<3(1-\epsilon)|A|$, $\epsilon>0$; namely, we show that $A$ is contained either in a "small" one-dimensional coset progression, or in a union of fewer than $\epsilon^{-1}$ cosets of a finite subgroup. The bounds $3(1-\epsilon)|A|$ and $\epsilon^{-1}$ are best possible in the sense that none of them can be relaxed without tightened another one, and the estimate obtained for the size of the c...
March 9, 2016
Let $A$ be a finite subset of an arbitrary additive group $G$, and let $\phi(A)$ denote the cardinality of the largest subset $B$ in $A$ that is sum-avoiding in $A$ (that is to say, $b_1+b_2 \not \in A$ for all distinct $b_1,b_2 \in B$). The question of controlling the size of $A$ in terms of $\phi(A)$ in the case when $G$ was torsion-free was posed by Erd\H{o}s and Moser. When $G$ has torsion, $A$ can be arbitrarily large for fixed $\phi(A)$ due to the presence of subgroups....
June 12, 2011
A corollary of Kneser's theorem, one sees that any finite non-empty subset $A$ of an abelian group $G = (G,+)$ with $|A + A| \leq (2-\eps) |A|$ can be covered by at most $\frac{2}{\eps}-1$ translates of a finite group $H$ of cardinality at most $(2-\eps)|A|$. Using some arguments of Hamidoune, we establish an analogue in the noncommutative setting. Namely, if $A$ is a finite non-empty subset of a nonabelian group $G = (G,\cdot)$ such that $|A \cdot A| \leq (2-\eps) |A|$, then...
April 15, 2022
In this paper we start to investigate a new body of questions in additive combinatorics. The fundamental Cauchy--Davenport theorem gives a lower bound on the size of a sumset A+B for subsets of the cyclic group Zp of order p (p prime), and this is just one example of a large family of results. Our aim in this paper is to investigate what happens if we restrict the number of elements of one set that we may use to form the sums. Here is the question we set out to answer: given ...
September 9, 2013
Let $h$ be a positive integer and $A, B_1, B_2,\dots, B_h$ be finite sets in a commutative group. We bound $|A+B_1+...+B_h|$ from above in terms of $|A|, |A+B_1|,\dots,|A+B_h|$ and $h$. Extremal examples, which demonstrate that the bound is asymptotically sharp in all the parameters, are furthermore provided.
February 29, 2008
We show that if A is a set having small subtractive doubling in an abelian group, that is |A-A|< K|A|, then there is a polynomially large subset B of A-A so that the additive energy of B is large than (1/K)^{1 - \epsilon) where epsilon is a positive, universal exponent. (1/37 seems to suffice.)
July 4, 2018
We study pairs of subsets $A, B$ of a compact abelian group $G$ where the sumset $A+B:=\{a+b: a\in A, b\in B\}$ is small. Let $m$ and $m_{*}$ be Haar measure and inner Haar measure on $G$, respectively. Given $\varepsilon>0$, we classify all pairs $A,B$ of Haar measurable subsets of $G$ satisfying $m(A), m(B)>\varepsilon$ and $m_{*}(A+B)\leq m(A)+m(B)+\delta$ where $\delta=\delta(\varepsilon)>0$ is small. We also study the case where the $\delta$-popular sumset $A+_{\delta}B:...