July 16, 2022
Memristors have shown promising features for enhancing neuromorphic computing concepts and AI hardware accelerators. In this paper, we present a user-friendly software infrastructure that allows emulating a wide range of neuromorphic architectures with memristor models. This tool empowers studies that exploit memristors for online learning and online classification tasks, predicting memristor resistive state changes during the training process. The versatility of the tool is ...
March 1, 2017
A memristor is a two-terminal nanodevice that its properties attract a wide community of researchers from various domains such as physics, chemistry, electronics, computer and neuroscience.The simple structure for manufacturing, small scalability, nonvolatility and potential of using inlow power platforms are outstanding characteristics of this emerging nanodevice. In this report,we review a brief literature of memristor from mathematic model to the physical realization. Wedi...
May 19, 2023
Reservoir computing is a highly efficient machine learning framework for processing temporal data by extracting features from the input signal and mapping them into higher dimensional spaces. Physical reservoir layers have been realized using spintronic oscillators, atomic switch networks, silicon photonic modules, ferroelectric transistors, and volatile memristors. However, these devices are intrinsically energy-dissipative due to their resistive nature, which leads to incre...
August 7, 2023
Digital computers have been getting exponentially faster for decades, but huge challenges exist today. Transistor scaling, described by Moore's law, has been slowing down over the last few years, ending the era of fully predictable performance improvements. Furthermore, the data-centric computing demands fueled by machine learning applications are rapidly growing, and current computing systems -- even with the historical rate of improvements driven by Moore's law -- cannot ke...
May 11, 2023
In conventional digital computers, data and information are represented in binary form and encoded in the steady states of transistors. They are then processed in a quasi-static way. However, with transistors approaching their physical limits and the von Neumann bottleneck, the rate of improvement in computing efficiency has slowed down. Therefore, drawing inspiration from the dynamic and adaptive properties of biological systems, research in neural morphology computing has g...
December 17, 2022
Reservoir Computing is an emerging machine learning framework which is a versatile option for utilising physical systems for computation. In this paper, we demonstrate how a single node reservoir, made of a simple electronic circuit, can be employed for computation and explore the available options to improve the computational capability of the physical reservoirs. We build a reservoir computing system using a memristive chaotic oscillator as the reservoir. We choose two of t...
September 4, 2019
On metrics of density and power efficiency, neuromorphic technologies have the potential to surpass mainstream computing technologies in tasks where real-time functionality, adaptability, and autonomy are essential. While algorithmic advances in neuromorphic computing are proceeding successfully, the potential of memristors to improve neuromorphic computing have not yet born fruit, primarily because they are often used as a drop-in replacement to conventional memory. However,...
April 11, 2015
Advances in materials science have led to physical instantiations of self-assembled networks of memristive devices and demonstrations of their computational capability through reservoir computing. Reservoir computing is an approach that takes advantage of collective system dynamics for real-time computing. A dynamical system, called a reservoir, is excited with a time-varying signal and observations of its states are used to reconstruct a desired output signal. However, such ...
November 14, 2020
Recent results in adaptive matter revived the interest in the implementation of novel devices able to perform brain-like operations. Here we introduce a training algorithm for a memristor network which is inspired in previous work on biological learning. Robust results are obtained from computer simulations of a network of voltage controlled memristive devices. Its implementation in hardware is straightforward, being scalable and requiring very little peripheral computation o...
August 2, 2024
The modelling of memristive devices is an essential part of the development of novel in-memory computing systems. Models are needed to enable the accurate and efficient simulation of memristor device characteristics, for purposes of testing the performance of the devices or the feasibility of their use in future neuromorphic and in-memory computing architectures. The consideration of memristor non-idealities is an essential part of any modelling approach. The nature of the de...