June 25, 2014
Similar papers 5
June 19, 2024
In the random $r$-neighbour bootstrap percolation process on a graph $G$, a set of initially infected vertices is chosen at random by retaining each vertex of $G$ independently with probability $p\in (0,1)$, and "healthy" vertices get infected in subsequent rounds if they have at least $r$ infected neighbours. A graph $G$ \emph{percolates} if every vertex becomes eventually infected. A central problem in this process is to determine the critical probability $p_c(G,r)$, at whi...
August 12, 2003
We study families of dependent site percolation models on the triangular lattice ${\mathbb T}$ and hexagonal lattice ${\mathbb H}$ that arise by applying certain cellular automata to independent percolation configurations. We analyze the scaling limit of such models and show that the distance between macroscopic portions of cluster boundaries of any two percolation models within one of our families goes to zero almost surely in the scaling limit. It follows that each of these...
November 17, 2012
In this note we consider site percolation on a two dimensional sandwich of thickness two, the graph Z^2 x {0,1}. We prove that there is no percolation at the critical point. The same arguments are valid for a sandwich of thickness three with periodic boundary conditions. It remains an open problem to extend this result to other sandwiches.
July 26, 2018
Bootstrap percolation on a graph is a deterministic process that iteratively enlarges a set of occupied sites by adjoining points with at least $\theta$ occupied neighbors. The initially occupied set is random, given by a uniform product measure with a low density $p$. Our main focus is on this process on the product graph $\mathbb{Z}^2\times K_n^2$, where $K_n$ is a complete graph. We investigate how $p$ scales with $n$ so that a typical site is eventually occupied. Under cr...
October 3, 2007
These are the notes corresponding to the course given at the IAS-Park City graduate summer school in July 2007.
December 20, 2007
We consider a type of dependent percolation introduced by Aizenman and Grimmett, who showed that certain "enhancements" of independent (Bernoulli) percolation, called essential, make the percolation critical probability strictly smaller. In this paper we first prove that, for two-dimensional enhancements with a natural monotonicity property, being essential is also a necessary condition to shift the critical point. We then show that (some) critical exponents and the scaling l...
November 21, 1996
Cellular automata provide a fascinating class of dynamical systems capable of diverse complex behavior. These include simplified models for many phenomena seen in nature. Among other things, they provide insight into self-organized criticality, wherein dissipative systems naturally drive themselves to a critical state with important phenomena occurring over a wide range of length and time scales.
October 14, 2014
We introduce a simple lattice model in which percolation is constructed on top of critical percolation clusters, and show that it can be repeated recursively any number $n$ of generations. In two dimensions, we determine the percolation thresholds up to $n=5$. The corresponding critical clusters become more and more compact as $n$ increases, and define universal scaling functions of the standard two-dimensional form and critical exponents that are distinct for any $n$. This f...
June 12, 2002
In the bootstrap percolation model, sites in an $L$ by $L$ square are initially independently declared active with probability $p$. At each time step, an inactive site becomes active if at least two of its four neighbours are active. We study the behaviour as $p \to 0$ and $L \to \infty$ simultaneously of the probability $I(L,p)$ that the entire square is eventually active. We prove that $I(L,p) \to 1$ if $\liminf p \log L > \lambda$, and $I(L,p) \to 0$ if $\limsup p \log L <...
January 27, 2022
Consider a $p$-random subset $A$ of initially infected vertices in the discrete cube $[L]^3$, and assume that the neighbourhood of each vertex consists of the $a_i$ nearest neighbours in the $\pm e_i$-directions for each $i \in \{1,2,3\}$, where $a_1\le a_2\le a_3$. Suppose we infect any healthy vertex $v\in [L]^3$ already having $r$ infected neighbours, and that infected sites remain infected forever. In this paper we determine $\log$ of the critical length for percolation u...