July 12, 2014
Similar papers 4
August 19, 2019
In this work, we demonstrate a remarkable change of chemical trend of Iron under high pressure that is of great importance for understanding the distribution of elements in the Earth's mantle and core. Using first principles crystal structure search method, we conduct a systematic study of the propensity of p block elements to chemically bind with iron under high pressures ranging from ambient conditions to that of Earth's core. We show that under increasing pressure, iron te...
July 15, 2013
By employing $ab$ $initio$ molecular dynamics simulations at constant pressure, we investigated behavior of amorphous carbon dioxide between 0-100 GPa and 200-500 K and found several new amorphous forms. We focused on evolution of the high-pressure polymeric amorphous form known as a-carbonia on its way down to zero pressure, where it eventually converts into a molecular amorphous solid. During decompression, two nonmolecular amorphous forms with different proportion of three...
November 20, 2006
Motivated by recent experimental work, we use first-principles density functional theory methods to conduct an extensive search for low enthalpy structures of C$_6$Ca under pressure. As well as a range of buckled structures, which are energetically competitive over an intermediate range of pressures, we show that the high pressure system ($\gtrsim 18$ GPa) is unstable towards the formation of a novel class of layered structures, with the most stable compound involving carbon ...
January 30, 2023
(Mg, Fe)SiO$_3$ post-perovskite is the highest pressure silicate mineral phase in the Earth's interior. The extreme pressure and temperature conditions inside large extrasolar planets will likely lead to phase transitions beyond pPv. In this work we have explored the high-pressure phase relations in Mg$_2$SiO$_4$ using computations based on density functional theory. We find that a partially disordered I-42d type structure would be stable in the interiors of these super-Earth...
July 23, 2014
We have performed quantum Monte Carlo (QMC) simulations and density functional theory (DFT) calculations to study the equations of state of MgSiO$_3$ perovskite (Pv) and post-perovskite (PPv), up to the pressure and temperature conditions of the base of Earth's lower mantle. The ground state energies were derived using QMC and the temperature dependent Helmholtz free energies were calculated within the quasi-harmonic approximation and density functional perturbation theory. T...
February 11, 2019
Calcium silicate perovskite (CaSiO$_3$) is one of the major mineral components of the lower mantle, but has been the subject of relatively little work compared to the more abundant Mg-based materials. One of the major problems related to CaSiO$_3$ that is still the subject of research is its crystal structure under lower mantle conditions - a cubic Pm$\bar{3}$m structure is accepted in general, but some have suggested that lower-symmetry structures may be relevant. In this pa...
August 24, 2006
We report the discovery of a new molecular phase of carbon dioxide at high-pressure and high-temperature. Using x-ray diffraction, we identify this phase as the theoretically predicted high-temperature Cmca phase [Bonev et al., Phys. Rev. Lett., 91, 065501 (2003)]. Its relation with phase III, on one hand, and its relative stability with respect to phase IV, on the other hand, are discussed based on spectroscopic and melting data. The existence of this strictly molecular phas...
May 26, 2011
Equilibrium relationships involving solids are based on bulk thermodynamic properties that concern ideal crystals of infinite size. However, real processes towards equilibrium imply development of finite molecular-scale entities. The configuration of these early-stage clusters and the estimation of their excess energies with respect to the ideal crystal are keys to understanding the macroscopic behaviour of a given system. As nucleation events are difficult to study experimen...
November 28, 2012
Using ab initio evolutionary simulations, we explore all the possible stoichiometries for Mg-O system at pressures up to 850 GPa. In addition to MgO, our calculations find that two extraordinary compounds MgO2 and Mg3O2 become thermodynamically stable at 116 GPa and 500 GPa, respectively. Detailed chemical bonding analysis shows large charge transfer in all magnesium oxides. MgO2 contains peroxide ions [O-O]2-, while non-nuclear electron density maxima play the role of anions...
February 6, 2024
The electrical conductivity of magnesium silicate MgSiO3 has been studied, using the framework of the first-principles density functional theory and the Boltzmann transport theory, under the thermodynamic conditions of the Earth's lower mantle. We find that the conductivity of pristine MgSiO3 depends strongly on the structural phase of the material, as well as on temperature and pressure. The conductivity of the perovskite phase increases with increasing pressure (depth of th...