ID: 1408.1288

On the stability of the Erd\H{o}s-Ko-Rado theorem

August 6, 2014

View on ArXiv
Béla Bollobás, Bhargav Narayanan, Andrei Raigorodskii
Mathematics
Combinatorics

Delete the edges of a Kneser graph independently of each other with some probability: for what probabilities is the independence number of this random graph equal to the independence number of the Kneser graph itself? We prove a sharp threshold result for this question in certain regimes. Since an independent set in the Kneser graph is the same as a uniform intersecting family, this gives us a random analogue of the Erd\H{o}s-Ko-Rado theorem.

Similar papers 1

On the stability of some Erd\H{o}s--Ko--Rado type results

September 30, 2015

94% Match
Mikhail Pyaderkin
Combinatorics

Consider classical Kneser's graph $K(n,r)$: for two natural numbers $ r, n $ such that $r \le n / 2$, its vertices are all the subsets of $[n]=\{1,2,\ldots,n\}$ of size $r$, and two such vertices are adjacent if the corresponding subsets are disjoint. The Erd\H{o}s--Ko--Rado theorem states that the size of the largest independent set in this graph is $\binom{n-1}{r-1}$. Now let us delete each edge of the graph $K(n,r)$ with some fixed probability $p$ independently of each oth...

Find SimilarView on arXiv
József Balogh, Béla Bollobás, Bhargav Narayanan
Combinatorics

For natural numbers $n,r \in \mathbb{N}$ with $n\ge r$, the Kneser graph $K(n,r)$ is the graph on the family of $r$-element subsets of $\{1,\dots,n\}$ in which two sets are adjacent if and only if they are disjoint. Delete the edges of $K(n,r)$ with some probability, independently of each other: is the independence number of this random graph equal to the independence number of the Kneser graph itself? We answer this question affirmatively as long as $r/n$ is bounded away fro...

On "stability" in the Erd\H{o}s-Ko-Rado theorem

February 19, 2015

93% Match
Pat Devlin, Jeff Kahn
Combinatorics

Denote by $K_p(n,k)$ the random subgraph of the usual Kneser graph $K(n,k)$ in which edges appear independently, each with probability $p$. Answering a question of Bollob\'as, Narayanan, and Raigorodskii,we show that there is a fixed $p<1$ such that a.s. (i.e., with probability tending to 1 as $k \to \infty$) the maximum independent sets of $K_p(2k+1, k)$ are precisely the sets $\{A\in V(K(2k+1,k)): x\in A\}$ ($x\in [2k+1]$). We also complete the determination of the order ...

Find SimilarView on arXiv

Removal and Stability for Erd\H{o}s-Ko-Rado

December 26, 2014

92% Match
Shagnik Das, Tuan Tran
Combinatorics

A $k$-uniform family of subsets of $[n]$ is intersecting if it does not contain a disjoint pair of sets. The study of intersecting families is central to extremal set theory, dating back to the seminal Erd\H{o}s-Ko-Rado theorem of 1961 that bounds the size of the largest such families. A recent trend has been to investigate the structure of set families with few disjoint pairs. Friedgut and Regev proved a general removal lemma, showing that when $\gamma n \le k \le (\tfrac12 ...

Find SimilarView on arXiv

Sharp threshold for the Erd\H{o}s-Ko-Rado theorem

May 6, 2021

92% Match
József Balogh, Robert A. Krueger, Haoran Luo
Combinatorics

For positive integers $n$ and $k$ with $n\geq 2k+1$, the Kneser graph $K(n,k)$ is the graph with vertex set consisting of all $k$-sets of $\{1,\dots,n\}$, where two $k$-sets are adjacent exactly when they are disjoint. The independent sets of $K(n,k)$ are $k$-uniform intersecting families, and hence the maximum size independent sets are given by the Erd\H{o}s-Ko-Rado Theorem. Let $K_p(n,k)$ be a random spanning subgraph of $K(n,k)$ where each edge is included independently wi...

Find SimilarView on arXiv

On the random version of the Erd\H{o}s matching conjecture

February 27, 2018

89% Match
Meysam Alishahi, Ali Taherkhani
Combinatorics

The Kneser hypergraph ${\rm KG}^r_{n,k}$ is an $r$-uniform hypergraph with vertex set consisting of all $k$-subsets of $\{1,\ldots,n\}$ and any collection of $r$ vertices forms an edge if their corresponding $k$-sets are pairwise disjoint. The random Kneser hypergraph ${\rm KG}^r_{n,k}(p)$ is a spanning subhypergraph of ${\rm KG}^r_{n,k}$ in which each edge of ${\rm KG}^r_{n,k}$ is retained independently of each other with probability $p$. The independence number of random su...

Find SimilarView on arXiv

A Generalization of the Erd\"{o}s-Ko-Rado Theorem

February 22, 2009

89% Match
Meysam Alishahi, Hossein Hajiabolhassan, Ali Taherkhani
Combinatorics

In this note, we investigate some properties of local Kneser graphs defined in [8]. In this regard, as a generalization of the Erd${\rm \ddot{o}}$s-Ko-Rado theorem, we characterize the maximum independent sets of local Kneser graphs. Next, we present an upper bound for their chromatic number.

Find SimilarView on arXiv

Erd\H{o}s-Ko-Rado for random hypergraphs: asymptotics and stability

September 12, 2014

88% Match
Marcelo M. Gauy, Hiêp Hàn, Igor C. Oliveira
Combinatorics

We investigate the asymptotic version of the Erd\H{o}s-Ko-Rado theorem for the random $k$-uniform hypergraph $\mathcal{H}^k(n,p)$. For $2 \leq k(n) \leq n/2$, let $N=\binom{n}k$ and $D=\binom{n-k}k$. We show that with probability tending to 1 as $n\to\infty$, the largest intersecting subhypergraph of $\mathcal{H}^k(n,p)$ has size $(1+o(1))p\frac kn N$, for any $p\gg \frac nk\ln^2\!\left(\frac nk\right)D^{-1}$. This lower bound on $p$ is asymptotically best possible for $k=\Th...

Find SimilarView on arXiv

Maximal degrees in subgraphs of Kneser graphs

April 18, 2020

88% Match
Peter Frankl, Andrey Kupavskii
Combinatorics
Discrete Mathematics

In this paper, we study the maximum degree in non-empty induced subgraphs of the Kneser graph $KG(n,k)$. One of the main results asserts that, for $k>k_0$ and $n>64k^2$, whenever a non-empty subgraph has $m\ge k{n-2\choose k-2}$ vertices, its maximum degree is at least $\frac 12(1-\frac {k^2}n) m - {n-2\choose k-2}\ge 0.49 m$. This bound is essentially best possible. One of the intermediate steps is to obtain structural results on non-empty subgraphs with small maximum degree...

Find SimilarView on arXiv

On random subgraphs of Kneser and Schrijver graphs

February 3, 2015

87% Match
Andrey Borisovich Kupavskii
Combinatorics
Discrete Mathematics

A Kneser graph $KG_{n,k}$ is a graph whose vertices are in one-to-one correspondence with $k$-element subsets of $[n],$ with two vertices connected if and only if the corresponding sets do not intersect. A famous result due to Lov\'asz states that the chromatic number of a Kneser graph $KG_{n,k}$ is equal to $n-2k+2$. In this paper we study the chromatic number of a random subgraph of a Kneser graph $KG_{n,k}$ as $n$ grows. A random subgraph $KG_{n,k}(p)$ is obtained by inclu...

Find SimilarView on arXiv