September 2, 2017
The gedanken experiment of Maxwell's demon has led to the studies concerning the foundations of thermodynamics and statistical mechanics. The demon measures fluctuations of a system's observable and converts the information gain into work via feedback control. Recent developments have elucidated the relationship between the acquired information and the entropy production and generalized the second law of thermodynamics and the fluctuation theorems. Here we extend the scope to...
May 12, 2021
The study of Maxwell demon and quantum entanglement is important because of its foundational significance in physics and its potential applications in quantum information. Previous research on the Maxwell demon has primarily focused on thermodynamics, taking into account quantum correlations. Here we consider from another perspective and ask whether quantum non-locality correlations can be simulated by performing work. The Maxwell demon-assisted Einstein-Podolsky-Rosen (EPR) ...
May 9, 2011
Following recent work by Marathe and Parrondo [PRL, 104, 245704 (2010)], we construct a classical Hamiltonian system whose energy is reduced during the adiabatic cycling of external parameters, when initial conditions are sampled microcanonically. Combining our system with a device that measures its energy, we propose a cyclic procedure during which energy is extracted from a heat bath and converted to work, in apparent violation of the second law of thermodynamics. This para...
June 13, 2007
The information-theoretic arguments presented in a recent publication on "Quantum discord and Maxwell's demons" are discussed, and found not to address the problem specified by Maxwell. Two interrelated and definitive exorcisms of the demon, one purely thermodynamic, and the other quantum-thermodynamic are briefly discussed. For each of the two exorcisms, the demon is shown to be incapable to accomplish his assignment neither because of limitations arising from information-th...
May 27, 2018
This chapter provides an overview of the methods and results for quantum thermodynamic experiments with single-electron devices. The experiments with a single-electron box on Jarzynski equality and Crooks relation, two-temperature fluctuation relations, and Maxwell's demon performed over the past few years are reviewed here. We further review the first experimental realization of an autonomous Maxwell's demon using a single-electron box as the demon.
February 7, 2017
The essence of both classical and quantum engines is to extract useful energy (work) from stochastic energy sources, e.g. thermal baths. In Maxwell's demon engines, work extraction is assisted by a feedback control based on measurements performed by a demon, whose memory is erased at some nonzero energy cost. Here we propose a new type of quantum Maxwell's demon engine where work is directly extracted from the measurement channel, such that no heat bath is required. We show t...
May 3, 2018
This paper provides an overview of the first experimental realizations of quantum-mechanical Maxwell's demons based on superconducting circuits. The principal results of these experiments are recalled and put into context. We highlight the versatility offered by superconducting circuits for studying quantum thermodynamics.
June 23, 2009
Recently Sagawa and Ueda [Phys. Rev. Lett. 100, 080403 (2008)] derived a bound on the work that can be extracted from a quantum system with the use of feedback control. They left open the question of whether this bound could be achieved for every measurement that could be made by the controller. We show that it can, and that this follows straightforwardly from recent work on Maxwell's demon by Alicki et al. [Open Syst. Inform. Dynam. 11, 205 (2004)], for both discrete and con...
January 1, 2004
In this paper we examine the Maxwell Demon problem from an information theoretic and computational point-of-view. In particular we calculate the required capacity of a communication channel that transports information to and from the Demon. Equivalently, this is the number of bits required to store the information on a computer tape. We show that, in a simple model for the Maxwell Demon, the entropy of the universe increases by at least an amount eta=0.83999552 bits per parti...
October 12, 2015
It is nearly 150 years since Maxwell challenged the validity of the second law of thermodynamics by imagining a tiny creature who could sort the molecules of a gas in such a way that would decrease entropy without exerting any work. The demon has been discussed largely using thought experiments, but it has recently become possible to exert control over nanoscale systems, just as Maxwell imagined, and the status of the second law has become a more practical matter, raising the...