ID: 1410.1156

A bound on the multiplicative energy of a sum set and extremal sum-product problems

October 5, 2014

View on ArXiv
Oliver Roche-Newton, Dmitry Zhelezov
Mathematics
Combinatorics
Number Theory

In recent years some near-optimal estimates have been established for certain sum-product type estimates. This paper gives some first extremal results which provide information about when these bounds may or may not be tight. The main tool is a new result which provides a nontrivial upper bound on the multiplicative energy of a sum set or difference set.

Similar papers 1

An upper bound on the multiplicative energy

June 5, 2008

90% Match
Jozsef Solymosi
Combinatorics

We prove that the sumset or the productset of any finite set of real numbers, $A,$ is at least $|A|^{4/3-\epsilon},$ improving earlier bounds. Our main tool is a new upper bound on the multiplicative energy, $E(A,A).$

Find SimilarView on arXiv

On new sum-product type estimates

November 21, 2011

88% Match
Misha Rudnev
Combinatorics
Number Theory

New lower bounds involving sum, difference, product, and ratio sets for $A\subset \C$ are given.

Find SimilarView on arXiv

New results on sum-products in R

February 10, 2016

88% Match
Sergei Konyagin, Ilya D. Shkredov
Combinatorics
Number Theory

We improve a previous sum--products estimates in R, namely, we obtain that max{|A+A|,|AA|} \gg |A|^{4/3+c}, where c any number less than 5/9813. New lower bounds for sums of sets with small the product set are found. Also we prove some pure energy sum--products results, improving a result of Balog and Wooley, in particular.

Find SimilarView on arXiv

Energy estimates in sum-product and convexity problems

September 10, 2021

87% Match
Akshat Mudgal
Combinatorics
Number Theory

We prove a new class of low-energy decompositions which, amongst other consequences, imply that any finite set $A$ of integers may be written as $A = B \cup C$, where $B$ and $C$ are disjoint sets satisfying \[ |\{ (b_1, \dots, b_{2s}) \in B^{2s} \ | \ b_1 + \dots + b_{s} = b_{s+1} + \dots + b_{2s}\}| \ll_{s} |B|^{2s - (\log \log s)^{1/2 - o(1)}} \] and \[ |\{ (c_1, \dots, c_{2s}) \in C^{2s} \ | \ c_1 \dots c_{s} = c_{s+1} \dots c_{2s} \}| \ll_{s} |C|^{2s - (\log \log s)^{1/2...

Find SimilarView on arXiv

On the few products, many sums problem

December 1, 2017

87% Match
Brendan Murphy, Misha Rudnev, ... , Shteinikov Yurii N.
Combinatorics

We prove new results on additive properties of finite sets $A$ with small multiplicative doubling $|AA|\leq M|A|$ in the category of real/complex sets as well as multiplicative subgroups in the prime residue field. The improvements are based on new combinatorial lemmata, which may be of independent interest. Our main results are the inequality $$ |A-A|^3|AA|^5 \gtrsim |A|^{10}, $$ over the reals, "redistributing" the exponents in the textbook Elekes sum-product inequality a...

Find SimilarView on arXiv

On popular sums and differences of sets with small products

November 27, 2019

87% Match
Konstantin I. Olmezov, Aliaksei S. Semchankau, Ilya D. Shkredov
Combinatorics
Number Theory

Given a subset of real numbers $A$ with small product $AA$ we obtain a new upper bound for the additive energy of $A$. The proof uses a natural observation that level sets of convolutions of the characteristic function of $A$ have small product with $A$.

Find SimilarView on arXiv

An update on the sum-product problem

May 22, 2020

87% Match
Misha Rudnev, Sophie Stevens
Number Theory
Combinatorics

We improve the best known sum-product estimates over the reals. We prove that \[ \max(|A+A|,|AA|)\geq |A|^{\frac{4}{3} + \frac{2}{1167} - o(1)}\,, \] for a finite $A\subset \mathbb R$, following a streamlining of the arguments of Solymosi, Konyagin and Shkredov. We include several new observations to our techniques. Furthermore, \[ |AA+AA|\geq |A|^{\frac{127}{80} - o(1)}\,. \] Besides, for a convex set $A$ we show that \[ |A+A|\geq |A|^{\frac{30}{19}-o(1)}\,. \] This paper ...

Find SimilarView on arXiv

Extremal problems and the combinatorics of sumsets

October 27, 2023

87% Match
Melvyn B. Nathanson
Number Theory

This is a survey of old and new problems and results in additive number theory.

Find SimilarView on arXiv

Some new results on higher energies

December 27, 2012

86% Match
Ilya D. Shkredov
Combinatorics

In the paper we develop the method of higher energies. New upper bounds for the additive energies of convex sets, sets A with small |AA| and |A(A+1)| are obtained. We prove new structural results, including higher sumsets, and develop the notion of dual popular difference sets.

Find SimilarView on arXiv

The recent status of the volume product problem

July 6, 2015

86% Match
E. Jr Makai
Metric Geometry

In this small survey we consider the volume product, and sketch some of the best upper and lower estimates known up to now, based on our paper [BMMR]. The author thanks the organizers of the conference in Jurata, March 2010, for their kind invitation, and the excellent atmosphere there. This paper is based on the talk of the author on that conference.

Find SimilarView on arXiv