October 5, 2014
Similar papers 4
March 28, 2017
This is a sequel to the paper arXiv:1312.6438 by the same authors. In this sequel, we quantitatively improve several of the main results of arXiv:1312.6438, and build on the methods therein. The main new results is that, for any finite set $A \subset \mathbb R$, there exists $a \in A$ such that $|A(A+a)| \gtrsim |A|^{\frac{3}{2}+\frac{1}{186}}$. We give improved bounds for the cardinalities of $A(A+A)$ and $A(A-A)$. Also, we prove that $|\{(a_1+a_2+a_3+a_4)^2+\log a_5 : a_i...
June 29, 2011
In this paper we show that for any $k\geq2$, there exist two universal constants $C_k,D_k>0$, such that for any finite subset $A$ of positive real numbers with $|AA|\leq M|A|$, $|kA|\geq \frac{C_k}{M^{D_k}}\cdot|A|^{\log_42k}.$
January 3, 2022
We derive several new bounds for the problem of difference sets with local properties, such as establishing the super-linear threshold of the problem. For our proofs, we develop several new tools, including a variant of higher moment energies and a Ramsey-theoretic approach for the problem.
February 10, 2021
In this paper we prove new bounds for sums of convex or concave functions. Specifically, we prove that for all $A,B \subseteq \mathbb R$ finite sets, and for all $f,g$ convex or concave functions, we have $$|A + B|^{38}|f(A) + g(B)|^{38} \gtrsim |A|^{49}|B|^{49}.$$ This result can be used to obtain bounds on a number of two-variable expanders of interest, as well as to the asymmetric sum-product problem. We also adjust our technique to also prove the three-variable expans...
May 1, 2016
In the paper we study two characteristics D^+ (A), D^\times (A) of a set A which play important role in recent results concerning sum-product phenomenon. Also we obtain several variants and improvements of the Balog-Wooley decomposition theorem. In particular, we prove that any finite subset of real numbers can be split into two sets with small quantities D^+ and D^\times.
April 4, 2009
In the present paper we show that if A is a set of n real numbers, and the product set A.A has at most n^(1+c) elements, then the k-fold sumset kA has at least n^(log(k/2)/2 log 2 + 1/2 - f_k(c)) elements, where f_k(c) -> 0 as c -> 0. We believe that the methods in this paper might lead to a much stronger result; indeed, using a result of Trevor Wooley on Vinogradov's Mean Value Theorem and the Tarry-Escott Problem, we show that if |A.A| < n^(1+c), then |k(A.A)| > n^(Omega((k...
March 23, 2024
In this paper we come up with a dual version of the Furstenberg problem and obtain partial results via $L^p$ estimates of orthogonal projections. Examples are also discussed. Moreover, compared with general sets, we find that special structure like Cartesian product has better $L^p$-behavior. This leads to improvement on some discretized sum-product estimates.
July 25, 2020
This note is a continuation of an earlier paper by the authors. We describe improved constructions addressing a question of Erd\H{o}s and Szemer\'edi on sums and products of real numbers along the edges of a graph. We also add a few observations about related versions of the problem.
January 14, 2023
The paper considers estimates for some sums and products of functions of prime numbers. Several assertions on this topic have been proven. We also study extremal estimates for strongly additive and strongly multiplicative arithmetic functions. Several assertions on this topic are proved and examples are considered.
March 9, 2020
We give a short, self-contained proof of two key results from a paper of four of the authors. The first is a kind of weighted discrete Pr\'ekopa-Leindler inequality. This is then applied to show that if $A, B \subseteq \mathbb{Z}^d$ are finite sets and $U$ is a subset of a "quasicube" then $|A + B + U| \geq |A|^{1/2} |B|^{1/2} |U|$. This result is a key ingredient in forthcoming work of the fifth author and P\"alv\"olgyi on the sum-product phenomenon.