November 19, 2014
Similar papers 2
June 24, 2017
Sociotechnological and geospatial processes exhibit time varying structure that make insight discovery challenging. This paper proposes a new statistical model for such systems, modeled as dynamic networks, to address this challenge. It assumes that vertices fall into one of k types and that the probability of edge formation at a particular time depends on the types of the incident nodes and the current time. The time dependencies are driven by unique seasonal processes, whic...
April 24, 2018
Although the computational and statistical trade-off for modeling single graphs, for instance, using block models is relatively well understood, extending such results to sequences of graphs has proven to be difficult. In this work, we take a step in this direction by proposing two models for graph sequences that capture: (a) link persistence between nodes across time, and (b) community persistence of each node across time. In the first model, we assume that the latent commun...
March 1, 2019
There have been rapid developments in model-based clustering of graphs, also known as block modelling, over the last ten years or so. We review different approaches and extensions proposed for different aspects in this area, such as the type of the graph, the clustering approach, the inference approach, and whether the number of groups is selected or estimated. We also review models that combine block modelling with topic modelling and/or longitudinal modelling, regarding how...
October 11, 2017
We propose a dynamic edge exchangeable network model that can capture sparse connections observed in real temporal networks, in contrast to existing models which are dense. The model achieved superior link prediction accuracy on multiple data sets when compared to a dynamic variant of the blockmodel, and is able to extract interpretable time-varying community structures from the data. In addition to sparsity, the model accounts for the effect of social influence on vertices' ...
September 8, 2015
In this paper, we focus on the stochastic block model (SBM),a probabilistic tool describing interactions between nodes of a network using latent clusters. The SBM assumes that the networkhas a stationary structure, in which connections of time varying intensity are not taken into account. In other words, interactions between two groups are forced to have the same features during the whole observation time. To overcome this limitation,we propose a partition of the whole time h...
February 11, 2018
Networks observed in real world like social networks, collaboration networks etc., exhibit temporal dynamics, i.e. nodes and edges appear and/or disappear over time. In this paper, we propose a generative, latent space based, statistical model for such networks (called dynamic networks). We consider the case where the number of nodes is fixed, but the presence of edges can vary over time. Our model allows the number of communities in the network to be different at different t...
June 13, 2013
Directional and pairwise measurements are often used to model inter-relationships in a social network setting. The Mixed-Membership Stochastic Blockmodel (MMSB) was a seminal work in this area, and many of its capabilities were extended since then. In this paper, we propose the \emph{Dynamic Infinite Mixed-Membership stochastic blockModel (DIM3)}, a generalised framework that extends the existing work to a potentially infinite number of communities and mixture memberships for...
January 28, 2019
We propose a new dynamic stochastic blockmodel that focuses on the analysis of interaction lengths in networks. The model does not rely on a discretization of the time dimension and may be used to analyze networks that evolve continuously over time. The framework relies on a clustering structure on the nodes, whereby two nodes belonging to the same latent group tend to create interactions and non-interactions of similar lengths. We introduce a fast variational expectation-max...
November 4, 2019
Networks are useful representations of many systems with interacting entities, such as social, biological and physical systems. Characterizing the meso-scale organization, i.e. the community structure, is an important problem in network science. Community detection aims to partition the network into sets of nodes that are densely connected internally but sparsely connected to other dense sets of nodes. Current work on community detection mostly focuses on static networks. How...
December 7, 2013
Many kinds of data can be represented as a network or graph. It is crucial to infer the latent structure underlying such a network and to predict unobserved links in the network. Mixed Membership Stochastic Blockmodel (MMSB) is a promising model for network data. Latent variables and unknown parameters in MMSB have been estimated through Bayesian inference with the entire network; however, it is important to estimate them online for evolving networks. In this paper, we first ...