November 27, 2014
Similar papers 4
November 15, 2018
The spontaneous baryogenesis scenario explains how a baryon asymmetry can develop while baryon violating interactions are still in thermal equilibrium. However, generation of the chemical potential from the derivative coupling is dubious since the chemical potential may not appear after the Legendre transformation. The geometric phase (Pancharatnam-Berry phase) results from the geometrical properties of the parameter space of the Hamiltonian, which is calculated from the Berr...
September 8, 2020
Our first goal in this work is to study general and model-independent properties of cyclic cosmologies. The large number of studies of bouncing cosmologies and different cyclic scenarios published recently calls for a proper understanding of the universal properties of cyclic models. We thus first review and further elaborate the common physical and geometrical properties of various classes of cyclic models and then discuss how cyclic Universe can be treated as a dynamic syst...
February 13, 2008
Recent works have shown the important role Nonlinear Electrodynamics (NLED) can have in two crucial questions of Cosmology, concerning particular moments of its evolution for very large and for low-curvature regimes, that is for very condensed phase and at the present period of acceleration. We present here a toy model of a complete cosmological scenario in which the main factor responsible for the geometry is a nonlinear magnetic field which produces a FRW homogeneous and is...
January 8, 2018
In this work we use the Loop Quantum Cosmology modified scalar-tensor reconstruction techniques in order to investigate how bouncing and inflationary cosmologies can be realized. With regard to the inflationary cosmologies, we shall be interested in realizing the intermediate inflation and the Type IV singular inflation, while with regard to bouncing cosmologies, we shall realize the superbounce and the symmetric bounce. In all the cases, we shall find the kinetic term of the...
February 6, 2013
The dynamical behaviors of FRW Universe containing a posivive/negative potential scalar field in loop quantum cosmology scenario are discussed. The method of the phase-plane analysis is used to investigate the stability of the Universe. It is found that the stability properties in this situation are quite different from the classical cosmology case. For a positive potential scalar field coupled with a barotropic fluid, the cosmological autonomous system has five fixed points ...
March 20, 2022
In this paper we study the quantum brownian motion of a scalar point particle in the analog Friedman-Robertson-Walker spacetime in the presence of a disclination, in a condensed matter system. The analog spacetime is obtained as an effective description of a Bose-Einstein condensate in terms of quantum excitations of sound waves, named phonons. The dynamics of the phonons is described by a massless real scalar field whose modes are also subjected to a quasi-periodic condition...
May 18, 2011
We present analytic solutions to a class of cosmological models described by a canonical scalar field minimally coupled to gravity and experiencing self interactions through a hyperbolic potential. Using models and methods inspired by 2T-physics, we show how analytic solutions can be obtained in flat/open/closed Friedmann-Robertson-Walker universes. Among the analytic solutions, there are many interesting geodesically complete cyclic solutions in which the universe bounces at...
January 9, 2020
We provide an analytical solution to the quantum dynamics of a flat Friedmann-Lema\^itre- Robertson-Walker model with a massless scalar field in the presence of a small and positive cosmological constant, in the context of Loop Quantum Cosmology. We use a perturbative treatment with respect to the model without a cosmological constant, which is exactly solvable. Our solution is approximate, but it is precisely valid at the high curvature regime where quantum gravity correctio...
June 1, 2016
We study the cosmological implications of interactions between spacetime quanta in the Group Field Theory (GFT) approach to Quantum Gravity from a phenomenological perspective. Our work represents a first step towards understanding Early Universe Cosmology by studying the dynamics of the emergent continuum spacetime, as obtained from a fundamentally discrete microscopic theory. In particular, we show how GFT interactions lead to a recollapse of the Universe while preserving t...
July 2, 2016
Berry phases and gauge structures in parameter spaces of quantum systems are the foundation of a broad range of quantum effects such as quantum Hall effects and topological insulators. The gauge structures of interacting many-body systems, which often present exotic features, are particularly interesting. While quantum systems are intrinsically linear due to the superposition principle, nonlinear quantum mechanics can arise as an effective theory for interacting systems (such...