November 27, 2014
Similar papers 2
October 31, 2017
The global financial system can be represented as a large complex network in which banks, hedge funds and other financial institutions are interconnected to each other through visible and invisible financial linkages. Recently, a lot of attention has been paid to the understanding of the mechanisms that can lead to a breakdown of this network. This can happen when the existing financial links turn from being a means of risk diversification to channels for the propagation of r...
December 4, 2020
Complex networks datasets often come with the problem of missing information: interactions data that have not been measured or discovered, may be affected by errors, or are simply hidden because of privacy issues. This Element provides an overview of the ideas, methods and techniques to deal with this problem and that together define the field of network reconstruction. Given the extent of the subject, we shall focus on the inference methods rooted in statistical physics and ...
December 11, 2019
The latest financial crisis has painfully revealed the dangers arising from a globally interconnected financial system. Conventional approaches based on the notion of the existence of equilibrium and those which rely on statistical forecasting have seen to be inadequate to describe financial systems in any reasonable way. A more natural approach is to treat financial systems as complex networks of claims and obligations between various financial institutions present in an eco...
October 26, 2017
Information is a valuable asset for agents in socio-economic systems, a significant part of the information being entailed into the very network of connections between agents. The different interlinkages patterns that agents establish may, in fact, lead to asymmetries in the knowledge of the network structure; since this entails a different ability of quantifying relevant systemic properties (e.g. the risk of financial contagion in a network of liabilities), agents capable of...
May 11, 2018
A growing body of studies on systemic risk in financial markets has emphasized the key importance of taking into consideration the complex interconnections among financial institutions. Much effort has been put in modeling the contagion dynamics of financial shocks, and to assess the resilience of specific financial markets - either using real network data, reconstruction techniques or simple toy networks. Here we address the more general problem of how shock propagation dyna...
March 3, 2015
We consider the problem of risk diversification in complex networks. Nodes represent e.g. financial actors, whereas weighted links represent e.g. financial obligations (credits/debts). Each node has a risk to fail because of losses resulting from defaulting neighbors, which may lead to large failure cascades. Classical risk diversification strategies usually neglect network effects and therefore suggest that risk can be reduced if possible losses (i.e., exposures) are split a...
November 15, 2013
We survey systemic risks to financial markets and present a high-level description of an algorithm that measures systemic risk in terms of coupled networks.
September 14, 2020
Revealing the structural features of a complex system from the observed collective dynamics is a fundamental problem in network science. In order to compute the various topological descriptors commonly used to characterize the structure of a complex system (e.g. the degree, the clustering coefficient), it is usually necessary to completely reconstruct the network of relations between the subsystems. Several methods are available to detect the existence of interactions between...
October 29, 2016
The aim of this paper is to quantify and manage systemic risk caused by default contagion in the interbank market. We model the market as a random directed network, where the vertices represent financial institutions and the weighted edges monetary exposures between them. Our model captures the strong degree of heterogeneity observed in empirical data and the parameters can easily be fitted to real data sets. One of our main results allows us to determine the impact of local ...
February 22, 2019
Evaluation of systemic risk in networks of financial institutions in general requires information of inter-institution financial exposures. In the framework of Debt Rank algorithm, we introduce an approximate method of systemic risk evaluation which requires only node properties, such as total assets and liabilities, as inputs. We demonstrate that this approximation captures a large portion of systemic risk measured by Debt Rank. Furthermore, using Monte Carlo simulations, we...