December 2, 2014
Similar papers 5
July 31, 2009
We study the role of non-perturbative quantum gravity effects in the Ekpyrotic/Cyclic model using the effective framework of loop quantum cosmology in the presence of anisotropies. We show that quantum geometric modifications to the dynamical equations near the Planck scale as understood in the quantization of Bianchi-I spacetime in loop quantum cosmology lead to the resolution of classical singularity and result in a non-singular transition of the universe from the contracti...
July 1, 2008
In the recent years the quantization methods of Loop Quantum Gravity have been successfully applied to the homogeneous and isotropic Friedmann-Robertson-Walker space-times. The resulting theory, called Loop Quantum Cosmology (LQC), resolves the Big Bang singularity by replacing it with the Big Bounce. We argue that LQC generates also certain corrections to field theoretical inflationary scenarios. These corrections imply that in the LQC the effective sonic horizon becomes inf...
April 22, 2010
We study the dynamics of states perturbatively expanded about a harmonic system of loop quantum cosmology, exhibiting a bounce. In particular, the evolution equations for the first and second order moments of the system are analyzed. These moments back-react on the trajectories of the expectation values of the state and hence alter the energy density at the bounce. This analysis is performed for isotropic loop quantum cosmology coupled to a scalar field with a small but non-z...
December 4, 2021
This article will review quantum particle creation in expanding universes. The emphasis will be on the basic physical principles and on selected applications to cosmological models. The needed formalism of quantum field theory in curved spacetime will be summarized, and applied to the example of scalar particle creation in a spatially flat universe. Estimates for the creation rate will be given and applied to inflationary cosmology models. Analog models which illustrate the s...
June 12, 2019
We present a detailed analysis of a quantum model for Loop Quantum Cosmology based on strict application of the Thiemann regularization algorithm for the Hamiltonian in Loop Quantum Gravity, extending the results presented previously in our brief report. This construction leads to a qualitative modification of the bounce paradigm. Quantum gravity effects still lead to a quantum bounce connecting deterministically large classical Universes. However, the evolution features a la...
December 18, 2006
The closed, k=1, FRW model coupled to a massless scalar field is investigated in the framework of loop quantum cosmology using analytical and numerical methods. As in the k=0 case, the scalar field can be again used as emergent time to construct the physical Hilbert space and introduce Dirac observables. The resulting framework is then used to address a major challenge of quantum cosmology: resolving the big-bang singularity while retaining agreement with general relativity a...
January 13, 2017
In this work we propose a new general model of eternal cyclic Universe. We start from the assumption that quantum gravity corrections can be effectively accounted by the addition of higher order curvature terms in the Lagrangian density for gravity. It is also taken into account that coefficients associated with these curvature corrections will in general be dependent on a curvature regime. We therewith assume no new ingredients, such as extra dimensions, new scalar fields, p...
July 10, 2006
An improved Hamiltonian constraint operator is introduced in loop quantum cosmology. Quantum dynamics of the spatially flat, isotropic model with a massless scalar field is then studied in detail using analytical and numerical methods. The scalar field continues to serve as `emergent time', the big bang is again replaced by a quantum bounce, and quantum evolution remains deterministic across the deep Planck regime. However, while with the Hamiltonian constraint used so far in...
September 30, 2015
Singularities in general relativity such as the big bang and big crunch, and exotic singularities such as the big rip are the boundaries of the classical spacetimes. These events are marked by a divergence in the curvature invariants and the breakdown of the geodesic evolution. Recent progress on implementing techniques of loop quantum gravity to cosmological models reveals that such singularities may be generically resolved because of the quantum gravitational effects. Due t...
May 10, 2013
The big bang singularity could be understood as a breakdown of Einstein's General Relativity at very high energies. Adopting this viewpoint, other theories, that implement Einstein Cosmology at high energies, might solve the problem of the primeval singularity. One of them is Loop Quantum Cosmology (LQC) with a small cosmological constant that models a universe moving along an ellipse, which prevents singularities like the big bang or the big rip, in the phase space $(H,\rho)...