December 20, 2014
Similar papers 3
October 1, 2024
Deep neural network architectures often consist of repetitive structural elements. We introduce a new approach that reveals these patterns and can be broadly applied to the study of deep learning. Similar to how a power strip helps untangle and organize complex cable connections, this approach treats neurons as additional degrees of freedom in interactions, simplifying the structure and enhancing the intuitive understanding of interactions within deep neural networks. Further...
April 28, 2021
"Deep Learning"/"Deep Neural Nets" is a technological marvel that is now increasingly deployed at the cutting-edge of artificial intelligence tasks. This dramatic success of deep learning in the last few years has been hinged on an enormous amount of heuristics and it has turned out to be a serious mathematical challenge to be able to rigorously explain them. In this thesis, submitted to the Department of Applied Mathematics and Statistics, Johns Hopkins University we take se...
January 16, 2013
Transformation groups, such as translations or rotations, effectively express part of the variability observed in many recognition problems. The group structure enables the construction of invariant signal representations with appealing mathematical properties, where convolutions, together with pooling operators, bring stability to additive and geometric perturbations of the input. Whereas physical transformation groups are ubiquitous in image and audio applications, they do ...
June 4, 2019
There are two big unsolved mathematical questions in artificial intelligence (AI): (1) Why is deep learning so successful in classification problems and (2) why are neural nets based on deep learning at the same time universally unstable, where the instabilities make the networks vulnerable to adversarial attacks. We present a solution to these questions that can be summed up in two words; false structures. Indeed, deep learning does not learn the original structures that hum...
December 7, 2020
Promising resolutions of the generalization puzzle observe that the actual number of parameters in a deep network is much smaller than naive estimates suggest. The renormalization group is a compelling example of a problem which has very few parameters, despite the fact that naive estimates suggest otherwise. Our central hypothesis is that the mechanisms behind the renormalization group are also at work in deep learning, and that this leads to a resolution of the generalizati...
December 2, 2020
One of the central problems in the interface of deep learning and mathematics is that of building learning systems that can automatically uncover underlying mathematical laws from observed data. In this work, we make one step towards building a bridge between algebraic structures and deep learning, and introduce \textbf{AIDN}, \textit{Algebraically-Informed Deep Networks}. \textbf{AIDN} is a deep learning algorithm to represent any finitely-presented algebraic object with a s...
August 29, 2016
We show how the success of deep learning could depend not only on mathematics but also on physics: although well-known mathematical theorems guarantee that neural networks can approximate arbitrary functions well, the class of functions of practical interest can frequently be approximated through "cheap learning" with exponentially fewer parameters than generic ones. We explore how properties frequently encountered in physics such as symmetry, locality, compositionality, and ...
June 30, 2020
One of the most prominent attributes of Neural Networks (NNs) constitutes their capability of learning to extract robust and descriptive features from high dimensional data, like images. Hence, such an ability renders their exploitation as feature extractors particularly frequent in an abundant of modern reasoning systems. Their application scope mainly includes complex cascade tasks, like multi-modal recognition and deep Reinforcement Learning (RL). However, NNs induce impli...
March 18, 2022
The generalization mystery in deep learning is the following: Why do over-parameterized neural networks trained with gradient descent (GD) generalize well on real datasets even though they are capable of fitting random datasets of comparable size? Furthermore, from among all solutions that fit the training data, how does GD find one that generalizes well (when such a well-generalizing solution exists)? We argue that the answer to both questions lies in the interaction of the ...
August 26, 2019
In this work, we introduce a novel probabilistic representation of deep learning, which provides an explicit explanation for the Deep Neural Networks (DNNs) in three aspects: (i) neurons define the energy of a Gibbs distribution; (ii) the hidden layers of DNNs formulate Gibbs distributions; and (iii) the whole architecture of DNNs can be interpreted as a Bayesian neural network. Based on the proposed probabilistic representation, we investigate two fundamental properties of d...