January 20, 2015
Similar papers 5
January 8, 2023
Empirical observations suggest that in practice, community membership does not completely explain the dependency between the edges of an observation graph. The residual dependence of the graph edges are modeled in this paper, to first order, by auxiliary node latent variables that affect the statistics of the graph edges but carry no information about the communities of interest. We then study community detection in graphs obeying the stochastic block model and censored block...
June 10, 2021
In this paper, we study the problem of exact community recovery in the symmetric stochastic block model, where a graph of $n$ vertices is randomly generated by partitioning the vertices into $K \ge 2$ equal-sized communities and then connecting each pair of vertices with probability that depends on their community memberships. Although the maximum-likelihood formulation of this problem is discrete and non-convex, we propose to tackle it directly using projected power iteratio...
April 21, 2021
Finding communities in networks is a problem that remains difficult, in spite of the amount of attention it has recently received. The Stochastic Block-Model (SBM) is a generative model for graphs with "communities" for which, because of its simplicity, the theoretical understanding has advanced fast in recent years. In particular, there have been various results showing that simple versions of spectral clustering using the Normalized Laplacian of the graph can recover the co...
June 3, 2020
This article considers the problem of community detection in sparse dynamical graphs in which the community structure evolves over time. A fast spectral algorithm based on an extension of the Bethe-Hessian matrix is proposed, which benefits from the positive correlation in the class labels and in their temporal evolution and is designed to be applicable to any dynamical graph with a community structure. Under the dynamical degree-corrected stochastic block model, in the case ...
May 23, 2017
In this paper we consider the cluster estimation problem under the Stochastic Block Model. We show that the semidefinite programming (SDP) formulation for this problem achieves an error rate that decays exponentially in the signal-to-noise ratio. The error bound implies weak recovery in the sparse graph regime with bounded expected degrees, as well as exact recovery in the dense regime. An immediate corollary of our results yields error bounds under the Censored Block Model. ...
December 15, 2015
The Stochastic Block Model (SBM) is a widely used random graph model for networks with communities. Despite the recent burst of interest in recovering communities in the SBM from statistical and computational points of view, there are still gaps in understanding the fundamental information theoretic and computational limits of recovery. In this paper, we consider the SBM in its full generality, where there is no restriction on the number and sizes of communities or how they g...
April 23, 2018
We give a simple distributed algorithm for computing adjacency matrix eigenvectors for the communication graph in an asynchronous gossip model. We show how to use this algorithm to give state-of-the-art asynchronous community detection algorithms when the communication graph is drawn from the well-studied stochastic block model. Our methods also apply to a natural alternative model of randomized communication, where nodes within a community communicate more frequently than no...
April 12, 2019
We consider the community detection problem in sparse random hypergraphs. Angelini et al. (2015) conjectured the existence of a sharp threshold on model parameters for community detection in sparse hypergraphs generated by a hypergraph stochastic block model. We solve the positive part of the conjecture for the case of two blocks: above the threshold, there is a spectral algorithm which asymptotically almost surely constructs a partition of the hypergraph correlated with the ...
November 12, 2013
Community detection in networks is a key exploratory tool with applications in a diverse set of areas, ranging from finding communities in social and biological networks to identifying link farms in the World Wide Web. The problem of finding communities or clusters in a network has received much attention from statistics, physics and computer science. However, most clustering algorithms assume knowledge of the number of clusters k. In this paper we propose to automatically de...
June 24, 2013
Spectral algorithms are classic approaches to clustering and community detection in networks. However, for sparse networks the standard versions of these algorithms are suboptimal, in some cases completely failing to detect communities even when other algorithms such as belief propagation can do so. Here we introduce a new class of spectral algorithms based on a non-backtracking walk on the directed edges of the graph. The spectrum of this operator is much better-behaved than...