February 11, 2015
Structures of calcium peroxide (CaO2) are investigated in the pressure range 0-200 GPa using the ab initio random structure searching (AIRSS) method and density functional theory (DFT) calculations. At 0 GPa, there are several CaO2 structures very close in enthalpy, with the ground-state structure dependent on the choice of exchange-correlation functional. Further stable structures for CaO2 with C2/c, I4/mcm and P21/c symmetries emerge at pressures below 40 GPa. These phases are thermodynamically stable against decomposition into CaO and O2. The stability of CaO2 with respect to decomposition increases with pressure, with peak stability occurring at the CaO B1-B2 phase transition at 65 GPa. Phonon calculations using the quasiharmonic approximation show that CaO2 is a stable oxide of calcium at mantle temperatures and pressures, highlighting a possible role for CaO2 in planetary geochemistry. We sketch the phase diagram for CaO2, and find at least five new stable phases in the pressure/temperature ranges 0<P<60 GPa, 0<T<600 K, including two new candidates for the zero-pressure ground state structure.
Similar papers 1
Ab initio random structure searching (AIRSS) and density functional theory methods are used to predict structures of calcium and magnesium carbonate (CaCO$_3$ and MgCO$_3$) at high pressures. We find a previously unknown CaCO$_3$ structure which is more stable than the aragonite and "post aragonite" phases in the range 32--48 GPa. At pressures from 67 GPa to well over 100 GPa the most stable phase is a previously unknown CaCO$_3$ structure of the pyroxene type with fourfold c...
August 21, 2015
We have used density-functional-theory methods and the ab initio random structure searching (AIRSS) approach to predict stable structures and stoichiometries of mixtures of iron and oxygen at high pressures. Searching was performed for 12 different stoichiometries at pressures of 100, 350 and 500 GPa, which involved relaxing more than 32,000 structures. We find that Fe$_2$O$_3$ and FeO$_2$ are the only phases stable to decomposition at 100 GPa, while at 350 and 500 GPa severa...
February 23, 2015
It is well known that pressure causes profound changes in the properties of atoms and chemical bonding, leading to the formation of many unusual materials. Here we systematically explore all stable calcium carbides at pressures from ambient to 100 GPa using variable-composition evolutionary structure predictions. We find that Ca5C2, Ca2C, Ca3C2, CaC, Ca2C3, and CaC2 have stability fields on the phase diagram. Among these, Ca2C and Ca2C3 are successfully synthesized for the fi...
September 28, 2010
Experimental studies established that calcium undergoes several counterintuitive transitions under pressure: fcc \rightarrow bcc \rightarrow simple cubic \rightarrow Ca-IV \rightarrow Ca-V, and becomes a good superconductor in the simple cubic and higher-pressure phases. Here, using ab initio evolutionary simulations, we explore the behavior of Ca under pressure and find a number of new phases. Our structural sequence differs from the traditional picture for Ca, but is simila...
May 30, 2022
Using evolutionary crystal structure prediction algorithm USPEX, we showed that at pressures of the Earth's lower mantle CaAl2O4 is the only stable calcium aluminate. At pressures above 7.0 GPa it has the CaFe2O4-type structure and space group Pnma. This phase is one of prime candidate aluminous phases in the lower mantle of the Earth. We show that at low pressures 5CaO * 3Al2O3 (C5A3) with space group Cmc21, CaAl4O7 (C2/c) and CaAl2O4 (P21/m) structures are stable at pressur...
October 30, 2009
The observed "simple cubic" (sc) phase of elemental Ca at room temperature in the 32-109 GPa range is, from linear response calculations, dynamically unstable. By comparing first principle calculations of the enthalpy for five sc-related (non-close-packed) structures, we find that all five structures compete energetically at room temperature in the 40-90 GPa range, and three do so in the 100-130 GPa range. Some competing structures below 90 GPa are dynamically stable, i.e., n...
July 11, 2017
Calcium and magnesium carbonates are believed to be the host compounds for most of the oxidized carbon in the Earth's mantle. Here, using evolutionary crystal structure prediction method USPEX, we systematically explore the MgO-CO2 and CaO-CO2 systems at pressures ranging from 0 to 160 GPa to search for thermodynamically stable magnesium and calcium carbonates. While MgCO3 is the only stable magnesium carbonate, three calcium carbonates are stable under pressure: well-known C...
September 11, 2012
Simple cubic (SC) phase has been long experimentally determined as the high-pressure phase III of elemental calcium (Ca) since 1984. However, recent density functional calculations within semi-local approximation showed that this SC phase is structurally unstable by exhibiting severely imaginary phonons, and is energetically unstable with respect to a theoretical body-centered tetragonal I41/amd structure over the pressure range of phase III. These calculations generated exte...
October 15, 2021
High-pressure can transform the structures and compositions of materials either by changing the relative strengths of bonds or by altering the oxidation states of atoms. Both effects cause unconventional compositions in novel compounds that have been synthesized or predicted in large numbers in the past decade. What naturally follows is a question: what if pressure imposes strong effects on both chemical bonds and atomic orbitals in the same material. A systematic DFT and cry...
September 8, 2017
The stability, structure and properties of carbonate minerals at lower mantle conditions has significant impact on our understanding of the global carbon cycle and the composition of the interior of the Earth. In recent years, there has been significant interest in the behavior of carbonates at lower mantle conditions, specifically in their carbon hybridization, which has relevance for the storage of carbon within the deep mantle. Using high-pressure synchrotron X-ray diffrac...