June 6, 2005
Raman spectroscopic studies have been carried out on CaCrO4 under pressure up to 26GPa at ambient temperature. The Raman spectra showed CaCrO4 experienced a continuous structural phase transition started at near 6GPa, and finished at about 10GPa. It is found that the high-pressure phase could be quenched to ambient conditions. Pressure dependence of the Raman peaks suggested there existed four pressure regions related to different structural characters. We discussed these cha...
February 25, 2015
Recently, it has been shown that under pressure, unexpected and counterintuitive chemical compounds become stable. Laser shock experiments (A. Rode, unpublished) on alumina (Al2O3) have shown non-equilibrium decomposition of alumina with the formation of free Al and a mysterious transparent phase. Inspired by these observations, with have explored the possibility of the formation of new chemical compounds in the system Al-O. Using the variable-composition structure prediction...
November 13, 2008
Single crystal neutron and high-energy x-ray diffraction have identified the phase lines corresponding to transitions between the ambient-pressure tetragonal (T), the antiferromagnetic orthorhombic (O) and the non-magnetic collapsed tetragonal (cT) phases of CaFe2As2. We find no evidence of additional structures for pressures up to 2.5 GPa (at 300 K). Both the T-cT and O-cT transitions exhibit significant hysteresis effects and we demonstrate that coexistence of the O and cT ...
November 5, 2018
Crystal structure prediction with theoretical methods is particularly challenging when unit cells with many atoms need to be considered. Here we employ a symmetry-driven structure search (SYDSS) method and combine it with density functional theory (DFT) to predict novel crystal structures at high pressure. We sample randomly from all 1,506 Wyckoff positions of the 230 space groups to generate a set of initial structures. During the subsequent structural relaxation with DFT, e...
June 10, 2011
\textit{Ab initio} random structure searching based on density functional theory is used to determine the ground-state structures of ice at high pressures. Including estimates of lattice zero-point energies, ice is found to adopt three novel crystal phases. The underlying sub-lattice of O atoms remains similar among them, and the transitions can be characterized by reorganizations of the hydrogen bonds. The symmetric hydrogen bonds of ice X and $Pbcm$ are initially lost as ic...
February 8, 2013
We study the phase diagram of calcium fluoride (CaF2) under pressure using classical molecular dynamic simulations performed with a simple pairwise interatomic potential of the Born-Mayer-Huggings form. Our results obtained under conditions 0 < P < 20 GPa and 0 < T < 4000 K reveal a rich variety of multi-phase boundaries involving different crystal, superionic and liquid phases, for all which we provide an accurate parametrization. Interestingly, we predict the existence of t...
July 1, 2014
We predict a new candidate high-temperature high-pressure structure of FeSiO$_3$ with space-group symmetry Cmmm by applying an evolutionary algorithm within DFT+U that we call post-perovskite II (PPv-II). An exhaustive search found no other competitive candidate structures with ABO$_3$ composition. We compared the X-ray diffraction (XRD) pattern of FeSiO$_3$ PPv-II with experimental results of the recently reported H-phase of (Fe,Mg)SiO$_3$. The intensities and positions of t...
February 25, 2015
Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth's lower mantle. However, in 'icy' gas giants as well as in exoplanets oxygen may be a more abundant constituent (Ref. 1,2). Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cell...
April 17, 2003
The structure of La$_{1-x}$Ca$_{x}$MnO$_{3}$ solid solutions (x=0, 0.25, 0.50, 0.67, 1) under high pressure (up to 40-45 GPa) has been investigated by synchrotron X-ray powder diffraction (XRD) in order to characterize their volume \emph{vs.} pressure (P-V) equation of state. All the members of the solid solution, except the extreme compounds: LaMnO$_3$ and CaMnO$_{3}$, present low pressure orthorhombic P$nma$ phase evolving toward an high pressure tetragonal (I$4/mcm$) symme...
November 2, 2021
Iron oxides are fundamental components of planet-forming materials. Understanding the Fe-O system's behavior and properties under high pressure can help us identify many new phases and states possible in exoplanetary interiors, especially terrestrial ones. Using the adaptive genetic algorithm (AGA), we investigate the structure of iron oxides for a wide range of stoichiometries ($0.25\leq x_O \leq 0.8$) at 1, 2, and 3 TPa. Five unreported ground-state structures with Fe$_2$O,...