March 12, 2015
Similar papers 3
July 1, 2014
We predict a new candidate high-temperature high-pressure structure of FeSiO$_3$ with space-group symmetry Cmmm by applying an evolutionary algorithm within DFT+U that we call post-perovskite II (PPv-II). An exhaustive search found no other competitive candidate structures with ABO$_3$ composition. We compared the X-ray diffraction (XRD) pattern of FeSiO$_3$ PPv-II with experimental results of the recently reported H-phase of (Fe,Mg)SiO$_3$. The intensities and positions of t...
May 16, 2003
We present a theoretical study of solid carbon dioxide up to 50GPa and 1500K using first-principles calculations. In this pressure-temperature range, interpretations of recent experiments have suggested the existence of CO2 phases which are intermediate between molecular and covalent-bonded solids. We reexamine the concept of intermediate phases in the CO2 phase diagram and propose instead molecular structures, which provide an excellent agreement with measurements.
July 15, 2013
By employing $ab$ $initio$ molecular dynamics simulations at constant pressure, we investigated behavior of amorphous carbon dioxide between 0-100 GPa and 200-500 K and found several new amorphous forms. We focused on evolution of the high-pressure polymeric amorphous form known as a-carbonia on its way down to zero pressure, where it eventually converts into a molecular amorphous solid. During decompression, two nonmolecular amorphous forms with different proportion of three...
April 4, 2019
Atomistic simulations provide a meaningful way to determine the physico-chemical properties of liquids in a consistent theoretical framework. This approach takes on particular usefulness for the study of molten carbonates, in a context where thermodynamic and transport data are crucially needed over a large domain of temperatures and pressures (to ascertain the role of these melts in geochemical processes) but are very scarce in the literature, especially for the calco-magnes...
January 6, 2023
Carbonate precipitation in oceans is essential for the carbonate-silicate cycle (inorganic carbon cycle) to maintain temperate climates. By considering the thermodynamics of carbonate chemistry, we demonstrate that the ocean pH decreases by approximately 0.5 for a factor of 10 increase in the atmospheric carbon dioxide content. The upper and lower limits of ocean pH are within 1-4 of each other, where the upper limit is buffered by carbonate precipitation and defines the ocea...
October 11, 2015
The Mg-Si-O system is the major Earth and rocky planet-forming system. Here, through quantum variable-composition evolutionary structure explorations, we have discovered several unexpected stable binary and ternary compounds in the Mg-Si-O system. Besides the well-known SiO2 phases, we have found two extraordinary silicon oxides, SiO3 and SiO, which become stable at pressures above 0.51 TPa and 1.89 TPa, respectively. In the Mg-O system, we have found one new compound, MgO3, ...
August 26, 2015
The behaviour of alkaline carbonates at high pressure is poorly understood. Indeed, theoretical and experimental investigations of general trends of pressure induced structural changes appear in the literature only sporadically. In this article we use a combination of ab-initio calculations and high-pressure experiments in diamond anvil cell to determine crystal structures of high-pressure phases of K2CO3. The comparison with experimental data on Li2CO3 allows to reconstruct ...
October 10, 2018
Theoretical models predict the condensation of silicon carbide around host stars with C/O ratios higher than 0.65 (cf. C/O$_{\mathrm{Sun}}$ = 0.54), in addition to its observations in meteorites, interstellar medium and protoplanetary disks. Consequently, the interiors of rocky exoplanets born from carbon-enriched refractory material are often assumed to contain large amounts of silicon carbide. Here we aim to investigate the stability of silicon carbide in the interior of ca...
August 24, 2018
There is a direct relation between the composition of a host star and that of the planets orbiting around it. As such, the recent discovery of stars with unusual chemical composition, notably enriched in carbon instead of oxygen, support the existence of exoplanets with a chemistry dominated by carbides instead of oxides. Accordingly several studies have been recently conducted on the Si C binary system at high pressure and temperature. Nonetheless, the properties of carbides...
April 21, 2023
We investigated the stability of polymeric CO2 over a wide range of pressures, temperatures, and chemical environments. We find that the I-42d polymeric structure, consisting of a three-dimensional network of corner sharing CO4 tetrahedra, forms at 40-140 GPa and from a CO-N2 mixture at 39 GPa. An exceptional stability field of 0 to 286 GPa and 100 to 2500 K is documented for this structure, making it a viable candidate for planetary interiors. The stability of the tetrahedra...