ID: 1503.07218

Measuring Complexity through Average Symmetry

March 24, 2015

View on ArXiv
Roberto C. Alamino
Condensed Matter
Computer Science
Mathematics
Statistical Mechanics
Disordered Systems and Neura...
Information Theory
Information Theory

This work introduces a complexity measure which addresses some conflicting issues between existing ones by using a new principle - measuring the average amount of symmetry broken by an object. It attributes low (although different) complexity to either deterministic or random homogeneous densities and higher complexity to the intermediate cases. This new measure is easily computable, breaks the coarse graining paradigm and can be straightforwardly generalised, including to continuous cases and general networks. By applying this measure to a series of objects, it is shown that it can be consistently used for both small scale structures with exact symmetry breaking and large scale patterns, for which, differently from similar measures, it consistently discriminates between repetitive patterns, random configurations and self-similar structures.

Similar papers 1