April 23, 2015
Similar papers 2
September 8, 2000
Investigations of complexity of sequences lead to important applications such as effective data compression, testing of randomness, discriminating between information sources and many others. In this paper we establish formulas describing the distribution functions of random variables representing the complexity of finite sequences introduced by Lempel and Ziv in 1976. We show that the distribution functions depend in an affine way on the probabilities of the so called "exact...
August 5, 2005
This paper studies sequence prediction based on the monotone Kolmogorov complexity Km=-log m, i.e. based on universal deterministic/one-part MDL. m is extremely close to Solomonoff's universal prior M, the latter being an excellent predictor in deterministic as well as probabilistic environments, where performance is measured in terms of convergence of posteriors or losses. Despite this closeness to M, it is difficult to assess the prediction quality of m, since little is kno...
May 1, 2020
We introduce a notion of computable randomness for infinite sequences that generalises the classical version in two important ways. First, our definition of computable randomness is associated with imprecise probability models, in the sense that we consider lower expectations (or sets of probabilities) instead of classical 'precise' probabilities. Secondly, instead of binary sequences, we consider sequences whose elements take values in some finite sample space. Interestingly...
July 25, 2017
The halting probability of a Turing machine,also known as Chaitin's Omega, is an algorithmically random number with many interesting properties. Since Chaitin's seminal work, many popular expositions have appeared, mainly focusing on the metamathematical or philosophical significance of Omega (or debating against it). At the same time, a rich mathematical theory exploring the properties of Chaitin's Omega has been brewing in various technical papers, which quietly reveals the...
September 17, 2017
In this paper, we revisit a central concept in Kolmogorov complexity in which one would equate program-size complexity with information content. Despite the fact that Kolmogorov complexity has been widely accepted as an objective measure of the information content of a string, it has been the subject of many criticisms including the fundamental one directed by logicians and philosophers towards the statistical and semantical theories of information, which is about confusing a...
August 24, 2012
We consider the problem of inferring the probability distribution associated with a language, given data consisting of an infinite sequence of elements of the languge. We do this under two assumptions on the algorithms concerned: (i) like a real-life algorothm it has round-off errors, and (ii) it has no round-off errors. Assuming (i) we (a) consider a probability mass function of the elements of the language if the data are drawn independent identically distributed (i.i.d.), ...
June 15, 2011
Since human randomness production has been studied and widely used to assess executive functions (especially inhibition), many measures have been suggested to assess the degree to which a sequence is random-like. However, each of them focuses on one feature of randomness, leading authors to have to use multiple measures. Here we describe and advocate for the use of the accepted universal measure for randomness based on algorithmic complexity, by means of a novel previously pr...
June 19, 2009
We propose a test based on the theory of algorithmic complexity and an experimental evaluation of Levin's universal distribution to identify evidence in support of or in contravention of the claim that the world is algorithmic in nature. To this end we have undertaken a statistical comparison of the frequency distributions of data from physical sources on the one hand--repositories of information such as images, data stored in a hard drive, computer programs and DNA sequences...
March 24, 2020
Some established and also novel techniques in the field of applications of algorithmic (Kolmogorov) complexity currently co-exist for the first time and are here reviewed, ranging from dominant ones such as statistical lossless compression to newer approaches that advance, complement and also pose new challenges and may exhibit their own limitations. Evidence suggesting that these different methods complement each other for different regimes is presented and despite their man...
August 25, 2006
Kolmogorov complexity and algorithmic probability are defined only up to an additive resp. multiplicative constant, since their actual values depend on the choice of the universal reference computer. In this paper, we analyze a natural approach to eliminate this machine-dependence. Our method is to assign algorithmic probabilities to the different computers themselves, based on the idea that "unnatural" computers should be hard to emulate. Therefore, we study the Markov pro...