ID: 1504.06458

The two-star model: exact solution in the sparse regime and condensation transition

April 24, 2015

View on ArXiv
Alessia Annibale, Owen T Courtney
Condensed Matter
Disordered Systems and Neura...

The $2$-star model is the simplest exponential random graph model that displays complex behavior, such as degeneracy and phase transition. Despite its importance, this model has been solved only in the regime of dense connectivity. In this work we solve the model in the finite connectivity regime, far more prevalent in real world networks. We show that the model undergoes a condensation transition from a liquid to a condensate phase along the critical line corresponding, in the ensemble parameters space, to the Erd\"os-R\'enyi graphs. In the fluid phase the model can produce graphs with a narrow degree statistics, ranging from regular to Erd\"os-R\'enyi graphs, while in the condensed phase, the "excess" degree heterogeneity condenses on a single site with degree $\sim\sqrt{N}$. This shows the unsuitability of the two-star model, in its standard definition, to produce arbitrary finitely connected graphs with degree heterogeneity higher than Erd\"os-R\'enyi graphs and suggests that non-pathological variants of this model may be attained by softening the global constraint on the two-stars, while keeping the number of links hardly constrained.

Similar papers 1