ID: 1505.06005

Two universal physical principles shape the power-law statistics of real-world networks

May 22, 2015

View on ArXiv
Tom Lorimer, Florian Gomez, Ruedi Stoop
Physics
Condensed Matter
Physics and Society
Statistical Mechanics

The study of complex networks has pursued an understanding of macroscopic behavior by focusing on power-laws in microscopic observables. Here, we uncover two universal fundamental physical principles that are at the basis of complex networks generation. These principles together predict the generic emergence of deviations from ideal power laws, which were previously discussed away by reference to the thermodynamic limit. Our approach proposes a paradigm shift in the physics of complex networks, toward the use of power-law deviations to infer meso-scale structure from macroscopic observations.

Similar papers 1

Power-law statistics and universal scaling in the absence of criticality

March 27, 2015

92% Match
Jonathan Touboul, Alain Destexhe
Neurons and Cognition

Critical states are sometimes identified experimentally through power-law statistics or universal scaling functions. We show here that such features naturally emerge from networks in self-sustained irregular regimes away from criticality. In these regimes, statistical physics theory of large interacting systems predict a regime where the nodes have independent and identically distributed dynamics. We thus investigated the statistics of a system in which units are replaced by ...

Find SimilarView on arXiv

The Truth about Power Laws: Theory and Reality

May 21, 2021

92% Match
Xiaojun Zhang, Zheng He, Liwei Zhang, Lez Rayman-Bacchus, ... , Shen Shuhui
Physics and Society
Adaptation and Self-Organizi...

Consensus about the universality of the power law feature in complex networks is experiencing profound challenges. To shine fresh light on this controversy, we propose a generic theoretical framework in order to examine the power law property. First, we study a class of birth-and-death networks that is ubiquitous in the real world, and calculate its degree distributions. Our results show that the tails of its degree distributions exhibits a distinct power law feature, providi...

Find SimilarView on arXiv

Degree distribution of complex networks from statistical mechanics principles

June 14, 2006

92% Match
Ginestra Bianconi
Statistical Mechanics
Disordered Systems and Neura...

In this paper we describe the emergence of scale-free degree distributions from statistical mechanics principles. We define an energy associated to a degree sequence as the logarithm of the number of indistinguishable simple networks it is possible to draw given the degree sequence. Keeping fixed the total number of nodes and links, we show that the energy of scale-free distribution is much higher than the energy associated to the degree sequence of regular random graphs. Thi...

Find SimilarView on arXiv

Statistical mechanics of complex networks

June 6, 2001

91% Match
Reka Albert, Albert-Laszlo Barabasi
cond-mat.stat-mech
cond-mat.dis-nn
cs.NI
math.MP
nlin.AO
physics.data-an

Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the f...

Find SimilarView on arXiv

Scale-Free Growing Networks and Gravity

December 8, 2011

90% Match
J. A. Nieto
General Physics

We propose a possible relation between complex networks and gravity. Our guide in our proposal is the power-law distribution of the node degree in network theory and the information approach to gravity. The established bridge may allow us to carry geometric mathematical structures, which are considered in gravitational theories, to probabilistic aspects studied in the framework of complex networks and vice versa.

Find SimilarView on arXiv

What exactly are the properties of scale-free and other networks?

May 31, 2013

90% Match
Kevin Judd, Michael Small, Thomas Stemler
Adaptation and Self-Organizi...
Social and Information Netwo...
Computational Physics
Physics and Society

The concept of scale-free networks has been widely applied across natural and physical sciences. Many claims are made about the properties of these networks, even though the concept of scale-free is often vaguely defined. We present tools and procedures to analyse the statistical properties of networks defined by arbitrary degree distributions and other constraints. Doing so reveals the highly likely properties, and some unrecognised richness, of scale-free networks, and cast...

Find SimilarView on arXiv

Scale-free Networks Well Done

November 5, 2018

90% Match
Ivan Voitalov, der Hoorn Pim van, ... , Krioukov Dmitri
Physics and Society
Social and Information Netwo...
Data Analysis, Statistics an...

We bring rigor to the vibrant activity of detecting power laws in empirical degree distributions in real-world networks. We first provide a rigorous definition of power-law distributions, equivalent to the definition of regularly varying distributions that are widely used in statistics and other fields. This definition allows the distribution to deviate from a pure power law arbitrarily but without affecting the power-law tail exponent. We then identify three estimators of th...

Find SimilarView on arXiv

A surrogate for networks -- How scale-free is my scale-free network?

June 18, 2013

90% Match
Michael Small, Kevin Judd, Thomas Stemler
Physics and Society
Social and Information Netwo...
Adaptation and Self-Organizi...
Data Analysis, Statistics an...

Complex networks are now being studied in a wide range of disciplines across science and technology. In this paper we propose a method by which one can probe the properties of experimentally obtained network data. Rather than just measuring properties of a network inferred from data, we aim to ask how typical is that network? What properties of the observed network are typical of all such scale free networks, and which are peculiar? To do this we propose a series of methods t...

Find SimilarView on arXiv

A statistical mechanics approach for scale-free networks and finite-scale networks

March 7, 2007

90% Match
Ginestra Bianconi
Disordered Systems and Neura...
Statistical Mechanics

We present a statistical mechanics approach for the description of complex networks. We first define an energy and an entropy associated to a degree distribution which have a geometrical interpretation. Next we evaluate the distribution which extremize the free energy of the network. We find two important limiting cases: a scale-free degree distribution and a finite-scale degree distribution. The size of the space of allowed simple networks given these distribution is evaluat...

Find SimilarView on arXiv

Emergence of scaling in random networks

October 21, 1999

90% Match
Albert-Laszlo Univ. of Notre Dame Barabasi, Reka Univ. of Notre Dame Albert
Disordered Systems and Neura...
Statistical Mechanics
Adaptation and Self-Organizi...

Systems as diverse as genetic networks or the world wide web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature is found to be a consequence of the two generic mechanisms that networks expand continuously by the addition of new vertices, and new vertices attach preferentially to already well connected sites. A model based on these two ingredie...

Find SimilarView on arXiv