July 1, 2015
We discuss how a cyclic model for the flat universe can be constructively derived from Loop Quantum Gravity. This model has a lower bounce, at small values of the scale factor, which shares many similarities with that of Loop Quantum Cosmology. We find that quantum gravity corrections can be also relevant at energy densities much smaller than the Planckian one and that they can induce an upper bounce at large values of the scale factor.
Similar papers 1
July 14, 2004
Loop quantum gravity introduces strong non-perturbative modifications to the dynamical equations in the semi-classical regime, which are responsible for various novel effects, including resolution of the classical singularity in a Friedman universe. Here we investigate the modifications for the case of a cyclic universe potential, assuming that we can apply the four-dimensional loop quantum formalism within the effective four-dimensional theory of the cyclic scenario. We find...
November 8, 2022
In Loop Quantum Gravity mathematically rigorous models of full quantum gravity were proposed. In this paper we study a cosmological sector of one of the models describing quantum gravity with positive cosmological constant coupled to massless scalar field. In our previous research we introduced a method to reduce the model to homogeneous-isotropic sector at the quantum level. In this paper we propose a method to restrict to the spatially flat sector. After this restriction th...
June 7, 2006
Non-perturbative quantum geometric effects in Loop Quantum Cosmology predict a $\rho^2$ modification to the Friedmann equation at high energies. The quadratic term is negative definite and can lead to generic bounces when the matter energy density becomes equal to a critical value of the order of the Planck density. The non-singular bounce is achieved for arbitrary matter without violation of positive energy conditions. By performing a qualitative analysis we explore the natu...
December 2, 2014
We consider an isotropic and homogeneous universe in loop quantum cosmology. We assume that the matter content of the universe is dominated by dust matter in early time and a phantom matter at late time which constitutes the dark energy component. The quantum gravity modifications to the Friedmann equation in this model indicate that the classical big bang singularity and the future big rip singularity are resolved and are replaced by quantum bounce. It turns out that the big...
January 13, 2017
In this work we propose a new general model of eternal cyclic Universe. We start from the assumption that quantum gravity corrections can be effectively accounted by the addition of higher order curvature terms in the Lagrangian density for gravity. It is also taken into account that coefficients associated with these curvature corrections will in general be dependent on a curvature regime. We therewith assume no new ingredients, such as extra dimensions, new scalar fields, p...
November 28, 2007
In this paper, we study the possibility of model building of cyclic universe with Quintom matter in the framework of Loop Quantum Cosmology. After a general demonstration, we provide two examples, one with double-fluid and another double-scalar field, to show how such a scenario is obtained. Analytical and numerical calculations are both presented in the paper.
August 28, 2021
It is generally expected that in a non-singular cosmological model a cyclic evolution is straightforward to obtain on introduction of a suitable choice of a scalar field with a negative potential or a negative cosmological constant which causes a recollapse at some time in the evolution. We present a counter example to this conventional wisdom. Working in the realm of loop cosmological models with non-perturbative quantum gravity modifications we show that a modified version ...
July 31, 2009
We study the role of non-perturbative quantum gravity effects in the Ekpyrotic/Cyclic model using the effective framework of loop quantum cosmology in the presence of anisotropies. We show that quantum geometric modifications to the dynamical equations near the Planck scale as understood in the quantization of Bianchi-I spacetime in loop quantum cosmology lead to the resolution of classical singularity and result in a non-singular transition of the universe from the contracti...
November 18, 2005
Loop quantum cosmology is an application of recent developments for a non-perturbative and background independent quantization of gravity to a cosmological setting. Characteristic properties of the quantization such as discreteness of spatial geometry entail physical consequences for the structure of classical singularities as well as the evolution of the very early universe. While the singularity issue in general requires one to use difference equations for a wave function o...
July 29, 2009
In recent years, Loop Quantum Gravity has emerged as a solid candidate for a nonperturbative quantum theory of General Relativity. It is a background independent theory based on a description of the gravitational field in terms of holonomies and fluxes. In order to discuss its physical implications, a lot of attention has been paid to the application of the quantization techniques of Loop Quantum Gravity to symmetry reduced models with cosmological solutions, a line of resear...