July 29, 2015
Similar papers 3
June 19, 2024
In the random $r$-neighbour bootstrap percolation process on a graph $G$, a set of initially infected vertices is chosen at random by retaining each vertex of $G$ independently with probability $p\in (0,1)$, and "healthy" vertices get infected in subsequent rounds if they have at least $r$ infected neighbours. A graph $G$ \emph{percolates} if every vertex becomes eventually infected. A central problem in this process is to determine the critical probability $p_c(G,r)$, at whi...
January 2, 2014
The study of random graphs has become very popular for real-life network modeling such as social networks or financial networks. Inhomogeneous long-range percolation (or scale-free percolation) on the lattice $\mathbb Z^d$, $d\ge1$, is a particular attractive example of a random graph model because it fulfills several stylized facts of real-life networks. For this model various geometric properties such as the percolation behavior, the degree distribution and graph distances ...
December 16, 2010
Bootstrap percolation on the random graph $G_{n,p}$ is a process of spread of "activation" on a given realization of the graph with a given number of initially active nodes. At each step those vertices which have not been active but have at least $r\geq2$ active neighbors become active as well. We study the size $A^*$ of the final active set. The parameters of the model are, besides $r$ (fixed) and $n$ (tending to $\infty$), the size $a=a(n)$ of the initially active set and t...
July 27, 2021
We consider percolation on $\mathbb{Z}^d$ and on the $d$-dimensional discrete torus, in dimensions $d \ge 11$ for the nearest-neighbour model and in dimensions $d>6$ for spread-out models. For $\mathbb{Z}^d$, we employ a wide range of techniques and previous results to prove that there exist positive constants $c$ and $C$ such that the slightly subcritical two-point function and one-arm probabilities satisfy \[ \mathbb{P}_{p_c-\varepsilon}(0 \leftrightarrow x) \leq \frac{C}{\...
April 14, 2012
In $r$-neighbor bootstrap percolation on the vertex set of a graph $G$, a set $A$ of initially infected vertices spreads by infecting, at each time step, all uninfected vertices with at least $r$ previously infected neighbors. When the elements of $A$ are chosen independently with some probability $p$, it is natural to study the critical probability $p_c(G,r)$ at which it becomes likely that all of $V(G)$ will eventually become infected. Improving a result of Balogh, Bollob\'...
February 24, 2012
The Hamming torus of dimension $d$ is the graph with vertices $\{1,\dots,n\}^d$ and an edge between any two vertices that differ in a single coordinate. Bootstrap percolation with threshold $\theta$ starts with a random set of open vertices, to which every vertex belongs independently with probability $p$, and at each time step the open set grows by adjoining every vertex with at least $\theta$ open neighbors. We assume that $n$ is large and that $p$ scales as $n^{-\alpha}$ f...
January 22, 2022
Consider a $p$-random subset $A$ of initially infected vertices in the discrete cube $[L]^d$, and assume that the neighbourhood of each vertex consists of the $a_i$ nearest neighbours in the $\pm e_i$-directions for each $i \in \{1,2,\dots, d\}$, where $a_1\le a_2\le \dots \le a_d$. Suppose we infect any healthy vertex $v\in [L]^d$ already having $r$ infected neighbours, and that infected sites remain infected forever. In this paper we determine the $(d-1)$-times iterated log...
July 28, 2021
We consider vertex percolation on pseudo-random $d-$regular graphs. The previous study by the second author established the existence of phase transition from small components to a linear (in $\frac{n}{d}$) sized component, at $p=\frac{1}{d}$. In the supercritical regime, our main result recovers the sharp asymptotic of the size of the largest component, and shows that all other components are typically much smaller. Furthermore, we consider other typical properties of the la...
May 27, 2021
In this article we study the sharpness of the phase transition for percolation models defined on top of planar spin systems. The two examples that we treat in detail concern the Glauber dynamics for the Ising model and a Dynamic Bootstrap process. For both of these models we prove that their phase transition is continuous and sharp, providing also quantitative estimates on the two point connectivity. The techniques that we develop in this work can be applied to a variety of d...
March 27, 2023
In modified two-neighbour bootstrap percolation in two dimensions each site of $\mathbb Z^2$ is initially independently infected with probability $p$ and on each discrete time step one additionally infects sites with at least two non-opposite infected neighbours. In this note we establish that for this model the second term in the asymptotics of the infection time $\tau$ unexpectedly scales differently from the classical two-neighbour model, in which arbitrary two infected ne...