August 22, 2015
Let $(G, +)$ be an abelian group. In 2004, Eliahou and Kervaire found an explicit formula for the smallest possible cardinality of the sumset $A+A$, where $A \subseteq G$ has fixed cardinality $r$. We consider instead the smallest possible cardinality of the difference set $A-A$, which is always greater than or equal to the smallest possible cardinality of $A+A$ and can be strictly greater. We conjecture a formula for this quantity and prove the conjecture in the case that $G$ is a cyclic group or a vector space over a finite field. This resolves a conjecture of Bajnok and Matzke on signed sumsets.
Similar papers 1
July 8, 2023
For a non-empty $k$-element set $A$ of an additive abelian group $G$ and a positive integer $r \leq k$, we consider the set of elements of $G$ that can be written as a sum of $h$ elements of $A$ with at least $r$ distinct elements. We denote this set as $h^{(\geq r)}A$ for integers $h \geq r$. The set $h^{(\geq r)}A$ generalizes the classical sumsets $hA$ and $h\hat{}A$ for $r=1$ and $r=h$, respectively. Thus, we call the set $h^{(\geq r)}A$ the generalized sumset of $A$. By ...
November 12, 2009
In an abelian group G, a more sums than differences (MSTD) set is a subset A of G such that |A+A|>|A-A|. We provide asymptotics for the number of MSTD sets in finite abelian groups, extending previous results of Nathanson. The proof contains an application of a recently resolved conjecture of Alon and Kahn on the number of independent sets in a regular graph.
March 27, 2005
Let A,B,S be finite subsets of an abelian group G. Suppose that the restricted sumset C={a+b: a in A, b in B, and a-b not in S} is nonempty and some c in C can be written as a+b with a in A and b in B in at most m ways. We show that if G is torsion-free or elementary abelian then |C|\geq |A|+|B|-|S| -m. We also prove that |C|\geq |A|+|B|-2|S|-m if the torsion subgroup of G is cyclic. In the case S={0} this provides an advance on a conjecture of Lev.
May 29, 2014
Let A be a finite subset of a commutative additive group Z. The sumset and difference set of A are defined as the sets of pairwise sums and differences of elements of A, respectively. The well-known inequality $\sigma(A)^{1/2} \leq \delta(A) \leq \sigma(A)^2,$ where $\sigma(A)=\frac{|A+A|}{|A|}$ is the doubling constant of A and $\delta(A)=\frac{|A-A|}{|A|}$ is the difference constant of A, relates the relative sizes of the sumset and difference set of A. The exponent 2 in th...
July 13, 2005
Let A be a subset of a finite abelian group G. We say that A is sum-free if there is no solution of the equation x + y = z, with x, y, z belonging to the set A. Let SF(G) denotes the set of all sum-free subets of $G$ and $\sigma(G)$ denotes the number $ n^{-1}(\log_2 |SF(G)|) $. In this article we shall improve the error term in the asymptotic formula of $\sigma(G)$ which was obtained recently by Ben Green and Ruzsa. The methods used are a slight refinement of methods develop...
October 18, 2022
Suppose that $A$ is a finite, nonempty subset of a cyclic group of either infinite or prime order. We show that if the difference set $A-A$ is ``not too large'', then there is a nonzero group element with at least as many as $(2+o(1))|A|^2/|A-A|$ representations as a difference of two elements of $A$; that is, the second largest number of representations is, essentially, twice the average. Here the coefficient $2$ is the best possible. We also prove continuous and multidime...
September 9, 2016
Suppose that $A$, $B$ and $S$ are non-empty subsets of a finite abelian group $G$. Then the generalized restricted sumset $$ A\stackrel{S}+B:=\{a+b:\,a\in A,\ b\in B,\ a-b\not\in S\} $$ contains at least $$ \min\{|A|+|B|-3|S|,p(G)\} $$ elements, where $p(G)$ is the least prime factor of $|G|$. Further, we also have $$ |A\stackrel{S}+B|\geq \min\{|A|+|B|-|S|-2,p(G)\}, $$ provided that both $|A|$ and $|B|$ are large with respect to $|S|$.
March 9, 2016
We discuss several questions concerning sum-free sets in groups, raised by Erd\H{o}s in his survey "Extremal problems in number theory" (Proceedings of the Symp. Pure Math. VIII AMS) published in 1965. Among other things, we give a characterization for large sets $A$ in an abelian group $G$ which do not contain a subset $B$ of fixed size $k$ such that the sum of any two different elements of $B$ do not belong to $A$ (in other words, $B$ is sum-free with respect to $A$). Erd...
August 6, 2006
Let A be a finite subset of the integers or, more generally, of any abelian group, written additively. The set A has "more sums than differences" if |A+A|>|A-A|. A set with this property is called an MSTD set. This paper gives explicit constructions of families of MSTD sets of integers.
August 4, 2005
In this paper we prove that an abelian group contains $(2^{2m+1}(2^{m-1}+1), 2^m(2^m+1), 2^m)$-difference sets with $m\geqslant 3$ if and only if it contains an elementary abelian 2-group of order $2^{2m}$. Our proof shows that the method of constructing such difference sets is essentially unique.