September 19, 2012
We study the percolation time of the $r$-neighbour bootstrap percolation model on the discrete torus $(\Z/n\Z)^d$. For $t$ at most a polylog function of $n$ and initial infection probabilities within certain ranges depending on $t$, we prove that the percolation time of a random subset of the torus is exactly equal to $t$ with high probability as $n$ tends to infinity. Our proof rests crucially on three new extremal theorems that together establish an almost complete understa...
October 16, 2010
In r-neighbour bootstrap percolation on a graph G, a (typically random) set A of initially 'infected' vertices spreads by infecting (at each time step) vertices with at least r already-infected neighbours. This process may be viewed as a monotone version of the Glauber dynamics of the Ising model, and has been extensively studied on the d-dimensional grid $[n]^d$. The elements of the set A are usually chosen independently, with some density p, and the main question is to dete...
June 1, 2007
We study models of spatial growth processes where initially there are sources of growth (indicated by the colour green) and sources of a growth-stopping (paralyzing) substance (indicated by red). The green sources expand and may merge with others (there is no `inter-green' competition). The red substance remains passive as long as it is isolated. However, when a green cluster comes in touch with the red substance, it is immediately invaded by the latter, stops growing and sta...
October 13, 2014
Bootstrap percolation is a prominent framework for studying the spreading of activity on a graph. We begin with an initial set of active vertices. The process then proceeds in rounds, and further vertices become active as soon as they have a certain number of active neighbors. A recurring feature in bootstrap percolation theory is an `all-or-nothing' phenomenon: either the size of the starting set is so small that the process stops very soon, or it percolates (almost) complet...
January 22, 2022
Consider a $p$-random subset $A$ of initially infected vertices in the discrete cube $[L]^d$, and assume that the neighbourhood of each vertex consists of the $a_i$ nearest neighbours in the $\pm e_i$-directions for each $i \in \{1,2,\dots, d\}$, where $a_1\le a_2\le \dots \le a_d$. Suppose we infect any healthy vertex $v\in [L]^d$ already having $r$ infected neighbours, and that infected sites remain infected forever. In this paper we determine the $(d-1)$-times iterated log...
April 24, 2017
We investigate bootstrap percolation with infection threshold $r> 1$ on the binomial $k$-uniform random hypergraph $H_k(n,p)$ in the regime $n^{-1}\ll n^{k-2}p \ll n^{-1/r}$, when the initial set of infected vertices is chosen uniformly at random from all sets of given size. We establish a threshold such that if there are less vertices in the initial set of infected vertices, then whp only a few additional vertices become infected, while if the initial set of infected vertice...
April 11, 2024
Metastability thresholds lie at the heart of bootstrap percolation theory. Yet proving precise lower bounds is notoriously hard. We show that for two of the most classical models, two-neighbour and Frob\"ose, upper bounds are sharp to essentially arbitrary precision, by linking them to their local counterparts. In Frob\"ose bootstrap percolation, iteratively, any vertex of the square lattice that is the only healthy vertex of a $1\times1$ square becomes infected and infecti...
June 19, 2024
In the random $r$-neighbour bootstrap percolation process on a graph $G$, a set of initially infected vertices is chosen at random by retaining each vertex of $G$ independently with probability $p\in (0,1)$, and "healthy" vertices get infected in subsequent rounds if they have at least $r$ infected neighbours. A graph $G$ \emph{percolates} if every vertex becomes eventually infected. A central problem in this process is to determine the critical probability $p_c(G,r)$, at whi...
June 25, 2024
Majority bootstrap percolation is a monotone cellular automata that can be thought of as a model of infection spreading in networks. Starting with an initially infected set, new vertices become infected once more than half of their neighbours are infected. The average case behaviour of this process was studied on the $n$-dimensional hypercube by Balogh, Bollob\'{a}s and Morris, who showed that there is a phase transition as the typical density of the initially infected set in...
August 11, 2015
Majority bootstrap percolation on a graph $G$ is an epidemic process defined in the following manner. Firstly, an initially infected set of vertices is selected. Then step by step the vertices that have more infected than non-infected neighbours are infected. We say that percolation occurs if eventually all vertices in $G$ become infected. In this paper we study majority bootstrap percolation on the Erd\H{o}s-R\'enyi random graph $G(n,p)$ above the connectivity threshold. P...