ID: 1508.06847

The maximum time of 2-neighbour bootstrap percolation in grid graphs and some parameterized results

August 27, 2015

View on ArXiv
Thiago Braga Marcilon, Rudini Menezes Sampaio
Computer Science
Computational Complexity

In 2-neighborhood bootstrap percolation on a graph $G$, an infection spreads according to the following deterministic rule: infected vertices of $G$ remain infected forever and in consecutive rounds healthy vertices with at least two already infected neighbors become infected. Percolation occurs if eventually every vertex is infected. The maximum time $t(G)$ is the maximum number of rounds needed to eventually infect the entire vertex set. In 2013, it was proved by Benevides et al \cite{eurocomb13} that $t(G)$ is NP-hard for planar graphs and that deciding whether $t(G)\geq k$ is polynomial time solvable for $k\leq 2$, but is NP-complete for $k\geq 4$. They left two open problems about the complexity for $k=3$ and for planar bipartite graphs. In 2014, we solved the first problem\cite{wg2014}. In this paper, we solve the second one by proving that $t(G)$ is NP-complete even in grid graphs with maximum degree 3. We also prove that $t(G)$ is polynomial time solvable for solid grid graphs with maximum degree 3. Moreover, we prove that the percolation time problem is W[1]-hard on the treewidth of the graph, but it is fixed parameter tractable with parameters treewidth$+k$ and maxdegree$+k$.

Similar papers 1