July 18, 2006
We present a new approach to quantum general relativity based on the idea of Feynman to treat the graviton in Einstein's theory as a point particle field subject to quantum fluctuations just as any such field is in the well-known Standard Model of the electroweak and strong interactions. We show that by using resummation techniques based on the extension of the methods of Yennie, Frautschi and Suura to Feynman's formulation of Einstein's theory, we get calculable loop correct...
June 15, 2023
We extensively study the ultraviolet quantum properties of a nonlocal action for gravity nonminimally coupled to matter. The theory unifies matter and gravity in an action principle such that all the classical solutions of Einstein's theory coupled to matter are also solutions of the nonlocal theory. At the quantum level, we show that the theory is power-counting super-renormalizable in even dimensions and finite in odd dimensions. A simple extension of the model compatible w...
December 4, 2018
In this paper we will show an ultraviolet -infrared connection for ghost-free infinite derivative field theories where the Lagrangians are made up of exponentials of entire functions. In particular, for $N$-point amplitudes a new scale emerges in the infrared from the ultraviolet, i.e. $M_{\rm eff}\sim M_s/N^\alpha,$ where $M_s$ is the fundamental scale beyond the Standard Model, and $\alpha>0$ depends on the specific choice of an entire function and on whether we consider ze...
October 25, 2022
We discuss the birth of the non-perturbative approach to quantum gravity known as quantum Einstein gravity, in which the gravitational interactions are conjectured to be asymptotically safe. The interactions are assumed to be finite and consistent at high energies thanks to a scale-invariant ultraviolet completion. We present the framework on the basis of perturbative arguments that originally motivated it, paying special attention to the $\epsilon$-expansion in $d=2+\epsilon...
October 3, 2008
We present the status and update of a new approach to quantum general relativity as formulated by Feynman from the Einstein-Hilbert action wherein amplitude-based resummation techniques are applied to the theory's loop corrections to yield results (superficially) free of ultraviolet(UV) divergences. Recent applications are summarized.
January 22, 2020
In this paper we present an iterative method to generate an infinite class of new nonlocal field theories whose propagators are ghost-free. We first examine the scalar field case and show that the pole structure of such generalized propagators possesses the standard two derivative pole and in addition can contain complex conjugate poles which, however, do not spoil at least tree level unitarity as the optical theorem is still satisfied. Subsequently, we define analogous propa...
September 13, 2010
..."but we do not have quantum gravity." This phrase is often used when analysis of a physical problem enters the regime in which quantum gravity effects should be taken into account. In fact, there are several models of the gravitational field coupled to (scalar) fields for which the quantization procedure can be completed using loop quantum gravity techniques. The model we present in this paper consist of the gravitational field coupled to a scalar field. The result has sim...
June 12, 2012
In this paper we study an N=1 supersymmetric extension of a perturbatively super-renormalizable (nonlocal)theory of gravity in four dimensions. The nonlocal supergravity theory is power-counting super-renormalizable and tree level unitary with the same particle content of the local N=1 supergravity (as simple example, unitarity of the three dimensional N=1 and N=2 supergravity is proved). We believe that extended SO(N) supergravity, for N=4 or N=8, might be free from divergen...
October 1, 1996
We analyze the perturbative implications of the most general high derivative approach to quantum gravity based on a diffeomorphism invariant local action. In particular, we consider the super-renormalizable case with a large number of metric derivatives in the action. The structure of ultraviolet divergences is analyzed in some detail. We show that they are independent of the gauge fixing condition and the choice of field reparametrization. The cosmological counterterm is sho...
October 1, 1997
The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. The research in loop quantum gravity forms today a vast area, ranging from mathematical foundati...