September 22, 2015
Similar papers 2
September 8, 2014
We prove the existence of an asymptotic phase transition threshold on community detectability for the spectral modularity method [M. E. J. Newman, Phys. Rev. E 74, 036104 (2006) and Proc. National Academy of Sciences. 103, 8577 (2006)] under a stochastic block model. The phase transition on community detectability occurs as the inter-community edge connection probability $p$ grows. This phase transition separates a sub-critical regime of small $p$, where modularity-based comm...
October 22, 2023
This paper presents a comprehensive analysis of the generalized spectral structure of the modularity matrix $B$, which is introduced by Newman as the kernel matrix for the quadratic-form expression of the modularity function $Q$ used for community detection. The analysis is then seamlessly extended to the resolution-parametrized modularity matrix $B(\gamma)$, where $\gamma$ denotes the resolution parameter. The modularity spectral analysis provides fresh and profound insights...
April 8, 2005
We review and improve a recently introduced method for the detection of communities in complex networks. This method combines spectral properties of some matrices encoding the network topology, with well known hierarchical clustering techniques, and the use of the modularity parameter to quantify the goodness of any possible community subdivision. This provides one of the best available methods for the detection of community structures in complex systems.
June 28, 2015
Community detection is a fundamental problem in the domain of complex-network analysis. It has received great attention, and many community detection methods have been proposed in the last decade. In this paper, we propose a divisive spectral method for identifying community structures from networks, which utilizes a sparsification operation to pre-process the networks first, and then uses a repeated bisection spectral algorithm to partition the networks into communities. The...
June 7, 2016
We demonstrate an exact equivalence between two widely used methods of community detection in networks, the method of modularity maximization in its generalized form which incorporates a resolution parameter controlling the size of the communities discovered, and the method of maximum likelihood applied to the special case of the stochastic block model known as the planted partition model, in which all communities in a network are assumed to have statistically similar propert...
February 6, 2011
We present an asymptotically exact analysis of the problem of detecting communities in sparse random networks. Our results are also applicable to detection of functional modules, partitions, and colorings in noisy planted models. Using a cavity method analysis, we unveil a phase transition from a region where the original group assignment is undetectable to one where detection is possible. In some cases, the detectable region splits into an algorithmically hard region and an ...
February 17, 2006
Many networks of interest in the sciences, including a variety of social and biological networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure has attracted considerable recent attention. One of the most sensitive detection methods is optimization of the quality function known as "modularity" over the possible divisions of a network, but direct application of this method using, for instance, si...
May 10, 2006
We consider the problem of detecting communities or modules in networks, groups of vertices with a higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as "modularity" over possible divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in commun...
September 10, 2014
Consider a network consisting of two subnetworks (communities) connected by some external edges. Given the network topology, the community detection problem can be cast as a graph partitioning problem that aims to identify the external edges as the graph cut that separates these two subnetworks. In this paper, we consider a general model where two arbitrarily connected subnetworks are connected by random external edges. Using random matrix theory and concentration inequalitie...
August 22, 2011
Recently, a type of multi-resolution methods in community detection was introduced, which can adjust the resolution of modularity by modifying the modularity function with tunable resolution parameters, such as those proposed by Arenas, Fernandez and Gomez and by Reichardt and Bornholdt. In this paper, we show that these methods still have the intrinsic limitation-large communities may have been split before small communities become visible-because it is at the cost of the co...