September 28, 2015
In his famous letter in 1870, Maxwell describes how Joule's law can be violated "only by the intelligent action of a mere guiding agent", later coined as Maxwell's demon by Lord Kelvin. In this letter we study thermodynamics of information using an experimentally feasible Maxwell's demon setup based a single electron transistor capacitively coupled to a single electron box, where both the system and the Demon can be clearly identified. Such an engineered on-chip Demon measure...
September 5, 2006
We propose a new thermodynamic equality and several inequalities concerning the relationship between work and information for an isothermal process with Maxwell's demon. Our approach is based on the formulation a la Jarzynski of the thermodynamic engine and on the quantum information-theoretic characterization of the demon. The lower bound of each inequality, which is expressed in terms of the information gain by the demon and the accuracy of the demon's measurement, gives th...
October 18, 2022
A CMOS-based implementation of an autonomous Maxwell's demon was recently proposed (Phys. Rev. Lett. 129, 120602) to demonstrate that a Maxwell demon can still work at macroscopic scales, provided that its power supply is scaled appropriately. Here, we first provide a full analytical characterization of the non-autonomous version of that model. We then study system-demon information flows within generic autonomous bipartite setups displaying a macroscopic limit. By doing so, ...
June 25, 2012
We describe a minimal model of an autonomous Maxwell demon, a device that delivers work by rectifying thermal fluctuations while simultaneously writing information to a memory register. We solve exactly for the steady-state behavior of our model, and we construct its phase diagram. We find that our device can also act as a "Landauer eraser", using externally supplied work to remove information from the memory register. By exposing an explicit, transparent mechanism of operati...
February 1, 2021
While quantum measurement theories are built around density matrices and observables, the laws of thermodynamics are based on processes such as are used in heat engines and refrigerators. The study of quantum thermodynamics fuses these two distinct paradigms. In this article, we highlight the usage of quantum process matrices as a unified language for describing thermodynamic processes in the quantum regime. We experimentally demonstrate this in the context of a quantum Maxwe...
March 13, 2018
Recent advances in experimental techniques allow one to measure and control systems at the level of single molecules and atoms. Here gaining information about fluctuating thermodynamic quantities is crucial for understanding nonequilibrium thermodynamic behavior of small systems. To achieve this aim, stochastic thermodynamics offers a theoretical framework, and nonequilibrium equalities such as Jarzynski equality and fluctuation theorems provide key information about the fluc...
August 16, 2015
We propose and analyze Maxwell's demon based on a single qubit with avoided level crossing. Its operation cycle consists of adiabatic drive to the point of minimum energy separation, measurement of the qubit state, and conditional feedback. We show that the heat extracted from the bath at temperature $T$ can ideally approach the Landauer limit of $k_BT\ln 2$ per cycle even in the quantum regime. Practical demon efficiency is limited by the interplay of Landau-Zener transition...
May 15, 2024
In scenarios coined Maxwell's demon, information on microscopic degrees of freedom is used to seemingly violate the second law of thermodynamics. This has been studied in the classical as well as the quantum domain. In this paper, we study an implementation of Maxwell's demon that can operate in both domains. In particular, we investigate information-to-work conversion over the quantum-to-classical transition. The demon continuously measures the charge state of a double quant...
May 25, 2020
In a recent paper we have introduced a continuous version of the Maxwell demon (CMD) that is capable of extracting large amounts of work per cycle by repeated measurements of the state of the system. Here we underline its main features such as the role played by the Landauer limit in the average extracted work, the continuous character of the measurement process and the differences between our continuous Maxwell demon and an autonomous Maxwell demon. We demonstrate the revers...
November 3, 2016
We study how correlations affect the performance of the simulator of a Maxwell's demon demonstrated in a recent optical experiment [Vidrighin et al., Phys. Rev. Lett. 116, 050401 (2016)]. The power of the demon is found to be enhanced or hindered, depending on the nature of the correlation, in close analogy to the situation faced by a thermal demon.