November 25, 2015
Similar papers 4
February 24, 2016
Analysis of the topology of a graph, regular or bipartite one, can be done by clustering for regular ones or co-clustering for bipartite ones. The Stochastic Block Model and the Latent Block Model are two models, which are very similar for respectively regular and bipartite graphs, based on probabilistic models. Initially developed for binary graphs, these models have been extended to valued networks with optional covariates on the edges. This paper present a implementation o...
September 28, 2011
In this paper we estimate the propagation of liquidity shocks through interbank markets when the information about the underlying credit network is incomplete. We show that techniques such as Maximum Entropy currently used to reconstruct credit networks severely underestimate the risk of contagion by assuming a trivial (fully connected) topology, a type of network structure which can be very different from the one empirically observed. We propose an efficient message-passing ...
March 30, 2022
Meso-scale structures are network features where nodes with similar properties are grouped together instead of being treated individually. In this work, we provide formal and mathematical definitions of three such structures: assortative communities, disassortative communities and core-periphery. We then leverage these definitions and a Bayesian framework to quantify the presence/absence of each structure in a network. This allows for probabilistic statements about the networ...
January 5, 2022
We perform a systematic analysis of the quality of fit of the stochastic block model (SBM) for 275 empirical networks spanning a wide range of domains and orders of size magnitude. We employ posterior predictive model checking as a criterion to assess the quality of fit, which involves comparing networks generated by the inferred model with the empirical network, according to a set of network descriptors. We observe that the SBM is capable of providing an accurate description...
December 28, 2015
The stochastic block model (SBM) is a popular framework for studying community detection in networks. This model is limited by the assumption that all nodes in the same community are statistically equivalent and have equal expected degrees. The degree-corrected stochastic block model (DCSBM) is a natural extension of SBM that allows for degree heterogeneity within communities. This paper proposes a convexified modularity maximization approach for estimating the hidden communi...
October 17, 2019
The statistical inference of stochastic block models as emerged as a mathematicaly principled method for identifying communities inside networks. Its objective is to find the node partition and the block-to-block adjacency matrix of maximum likelihood i.e. the one which has most probably generated the observed network. In practice, in the so-called microcanonical ensemble, it is frequently assumed that when comparing two models which have the same number and sizes of communit...
November 4, 2014
In complex systems, the network of interactions we observe between system's components is the aggregate of the interactions that occur through different mechanisms or layers. Recent studies reveal that the existence of multiple interaction layers can have a dramatic impact in the dynamical processes occurring on these systems. However, these studies assume that the interactions between systems components in each one of the layers are known, while typically for real-world syst...
September 19, 2022
Communication networks such as emails or social networks are now ubiquitous and their analysis has become a strategic field. In many applications, the goal is to automatically extract relevant information by looking at the nodes and their connections. Unfortunately, most of the existing methods focus on analysing the presence or absence of edges and textual data is often discarded. However, all communication networks actually come with textual data on the edges. In order to t...
January 22, 2020
In bipartite networks, community structures are restricted to being disassortative, in that nodes of one type are grouped according to common patterns of connection with nodes of the other type. This makes the stochastic block model (SBM), a highly flexible generative model for networks with block structure, an intuitive choice for bipartite community detection. However, typical formulations of the SBM do not make use of the special structure of bipartite networks. Here we in...
October 24, 2014
We introduce several novel and computationally efficient methods for detecting "core--periphery structure" in networks. Core--periphery structure is a type of mesoscale structure that includes densely-connected core vertices and sparsely-connected peripheral vertices. Core vertices tend to be well-connected both among themselves and to peripheral vertices, which tend not to be well-connected to other vertices. Our first method, which is based on transportation in networks, ag...