January 18, 2016
Similar papers 3
September 22, 2016
When recovering an unknown signal from noisy measurements, the computational difficulty of performing optimal Bayesian MMSE (minimum mean squared error) inference often necessitates the use of maximum a posteriori (MAP) inference, a special case of regularized M-estimation, as a surrogate. However, MAP is suboptimal in high dimensions, when the number of unknown signal components is similar to the number of measurements. In this work we demonstrate, when the signal distributi...
October 10, 2016
We consider the problem of Gaussian mixture clustering in the high-dimensional limit where the data consists of $m$ points in $n$ dimensions, $n,m \rightarrow \infty$ and $\alpha = m/n$ stays finite. Using exact but non-rigorous methods from statistical physics, we determine the critical value of $\alpha$ and the distance between the clusters at which it becomes information-theoretically possible to reconstruct the membership into clusters better than chance. We also determin...
February 12, 2019
The advent of modern technology, permitting the measurement of thousands of characteristics simultaneously, has given rise to floods of data characterized by many large or even huge datasets. This new paradigm presents extraordinary challenges to data analysis and the question arises: how can conventional data analysis methods, devised for moderate or small datasets, cope with the complexities of modern data? The case of high dimensional data is particularly revealing of some...
May 22, 2020
This paper studies a high-dimensional inference problem involving the matrix tensor product of random matrices. This problem generalizes a number of contemporary data science problems including the spiked matrix models used in sparse principal component analysis and covariance estimation and the stochastic block model used in network analysis. The main results are single-letter formulas (i.e., analytical expressions that can be approximated numerically) for the mutual informa...
May 29, 2018
An algorithmic limit of compressed sensing or related variable-selection problems is analytically evaluated when a design matrix is given by an overcomplete random matrix. The replica method from statistical mechanics is employed to derive the result. The analysis is conducted through evaluation of the entropy, an exponential rate of the number of combinations of variables giving a specific value of fit error to given data which is assumed to be generated from a linear proces...
December 20, 2016
Methods of high-dimensional probability play a central role in applications for statistics, signal processing theoretical computer science and related fields. These lectures present a sample of particularly useful tools of high-dimensional probability, focusing on the classical and matrix Bernstein's inequality and the uniform matrix deviation inequality. We illustrate these tools with applications for dimension reduction, network analysis, covariance estimation, matrix compl...
August 19, 2019
This article is due to appear in the Handbook of Statistics, Vol. 43, Elsevier/North-Holland, Amsterdam, edited by Arni S. R. Srinivasa Rao and C. R. Rao. In modern day analytics, there is ever growing need to develop statistical models to study high dimensional data. Between dimension reduction, asymptotics-driven methods and random projection based methods, there are several approaches developed so far. For high dimensional parametric models, estimation and hypothesis tes...
June 16, 2020
Empirical Risk Minimization (ERM) algorithms are widely used in a variety of estimation and prediction tasks in signal-processing and machine learning applications. Despite their popularity, a theory that explains their statistical properties in modern regimes where both the number of measurements and the number of unknown parameters is large is only recently emerging. In this paper, we characterize for the first time the fundamental limits on the statistical accuracy of conv...
October 28, 2016
In this paper we derive the optimal linear shrinkage estimator for the high-dimensional mean vector using random matrix theory. The results are obtained under the assumption that both the dimension $p$ and the sample size $n$ tend to infinity in such a way that $p/n \to c\in(0,\infty)$. Under weak conditions imposed on the underlying data generating mechanism, we find the asymptotic equivalents to the optimal shrinkage intensities and estimate them consistently. The proposed ...
June 22, 2021
This paper develops an approach to inference in a linear regression model when the number of potential explanatory variables is larger than the sample size. The approach treats each regression coefficient in turn as the interest parameter, the remaining coefficients being nuisance parameters, and seeks an optimal interest-respecting transformation, inducing sparsity on the relevant blocks of the notional Fisher information matrix. The induced sparsity is exploited through a m...