February 10, 2016
Similar papers 5
November 22, 2011
In this paper we further study the relationship between convexity and additive growth, building on the work of Schoen and Shkredov (\cite{SS}) to get some improvements to earlier results of Elekes, Nathanson and Ruzsa (\cite{ENR}). In particular, we show that for any finite set $A\subset{\mathbb{R}}$ and any strictly convex or concave function $f$, \[|A+f(A)|\gg{\frac{|A|^{24/19}}{(\log|A|)^{2/19}}}\] and \[\max\{|A-A|,\ |f(A)+f(A)|\}\gg{\frac{|A|^{14/11}}{(\log|A|)^{2/11}}}....
May 20, 2020
We show two asymmetric estimates, one on the number of collinear triples and the other on that of solutions to $(a_1+a_2)(a_1^{\prime\prime\prime}+a_2^{\prime\prime\prime})=(a_1^\prime+a_2^\prime)(a_1^{\prime\prime}+a_2^{\prime\prime})$. As applications, we improve results on difference-product/division estimates and on Balog-Wooley decomposition: For any finite subset $A$ of $\mathbb{R}$, \[ \max\{|A-A|,|AA|\} \gtrsim |A|^{1+105/347},\quad \max\{|A-A|,|A/A|\} \gtrsim |A|^{1+...
September 15, 2006
We prove, using combinatorics and Kloosterman sum technology that if $A \subset {\Bbb F}_q$, a finite field with $q$ elements, and $q^{{1/2}} \lesssim |A| \lesssim q^{{7/10}}$, then $\max \{|A+A|, |A \cdot A|\} \gtrsim \frac{{|A|}^{{3/2}}}{q^{{1/4}}$.
May 27, 2020
Given $d \in \mathbb{N}$, we establish sum-product estimates for finite, non-empty subsets of $\mathbb{R}^d$. This is equivalent to a sum-product result for sets of diagonal matrices. In particular, let $A$ be a finite, non-empty set of $d \times d$ diagonal matrices with real entries. Then for all $\delta_1 < 1/3 + 5/5277$, we have \[ |A+A| + |A\cdot A| \gg_{d} |A|^{1 + \delta_{1}/d}. \] In this setting, the above estimate quantitatively strengthens a result of Chang.
November 5, 2021
The main results of this paper concern growth in sums of a $k$-convex function $f$. Firstly, we streamline the proof of a growth result for $f(A)$ where $A$ has small additive doubling, and improve the bound by removing logarithmic factors. The result yields an optimal bound for \[ |2^k f(A) - (2^k-1)f(A)|. \] We also generalise a recent result of Hanson, Roche-Newton and Senger, by proving that for any finite $A\subset \mathbb{R}$ \[ | 2^k f(sA-sA) - (2^k-1) f(sA-sA)| \g...
June 19, 2018
Let $A \subset \mathbb{F}_p$ of size at most $p^{3/5}$. We show $$|A+A| + |AA| \gtrsim |A|^{6/5 + c},$$ for $c = 4/305$. Our main tools are the cartesian product point--line incidence theorem of Stevens and de Zeeuw and the theory of higher energies developed by the second author.
February 12, 2015
Following the sum-product paradigm, we prove that for a set $B$ with polynomial growth, the product set $B.B$ cannot contain large subsets with size of order $|B|^2$ with small doubling. It follows that the additive energy of $B.B$ is asymptotically $o(|B|^6)$. In particular, we extend to sets of small doubling and polynomial growth the classical Multiplication Table theorem of Erd\H{o}s saying that $|[1..n]. [1..n]| = o(n^2)$.
April 6, 2018
We give a new proof of the discretized ring theorem for sets of real numbers. As a special case, we show that if $A\subset\mathbb{R}$ is a $(\delta,1/2)_1$-set in the sense of Katz and Tao, then either $A+A$ or $A.A$ must have measure at least $|A|^{1-\frac{1}{68}}$
February 24, 2014
A variation on the sum-product problem seeks to show that a set which is defined by additive and multiplicative operations will always be large. In this paper, we prove new results of this type. In particular, we show that for any finite set $A$ of positive real numbers, it is true that $$\left|\left\{\frac{a+b}{c+d}:a,b,c,d\in{A}\right\}\right|\geq{2|A|^2-1}.$$ As a consequence of this result, it is also established that $$|4^{k-1}A^{(k)}|:=|\underbrace{\underbrace{A\cdots{A...
January 27, 2017
Let $R$ be a finite valuation ring of order $q^r.$ Using a point-plane incidence estimate in $R^3$, we obtain sum-product type estimates for subsets of $R$. In particular, we prove that for $A\subset R$, $$|AA+A|\gg \min\left\{q^{r}, \frac{|A|^3}{q^{2r-1}}\right\}.$$ We also show that if $|A+A||A|^{2}>q^{3r-1}$, then $$|A^2+A^2||A+A|\gg q^{\frac{r}{2}}|A|^{\frac{3}{2}}.$$