September 5, 2020
Gene expression (GE) is an inherently random or stochastic or noisy process. The randomness in different steps of GE, e.g., transcription, translation, degradation, etc., leading to cell-to-cell variations in mRNA and protein levels. This variation appears in organisms ranging from microbes to metazoans. Stochastic gene expression has important consequences for cellular function. The random fluctuations in protein levels produce variability in cellular behavior. It is benefic...
October 26, 2014
It is well-known that gene activation/deactivation dynamics may be a major source of randomness in genetic networks, also in the case of large concentrations of the transcription factors. In this work, we investigate the effect of realistic extrinsic noises acting on gene deactivation in a common network motif - the positive feedback of a transcription factor on its own synthesis - under a variety of settings, i.e., distinct cellular types, distribution of proteins and proper...
July 20, 2012
Gene expression is inherently noisy as many steps in the read-out of the genetic information are stochastic. To disentangle the effect of different sources of stochasticity in such systems, we consider various models that describe some processes as stochastic and others as deterministic. We review earlier results for unregulated (constitutive) gene expression and present new results for a gene controlled by negative autoregulation with cell growth modeled by linear volume gro...
July 12, 2010
The intrinsic stochasticity of gene expression can lead to large variations in protein levels across a population of cells. To explain this variability, different sources of mRNA fluctuations ('Poisson' and 'Telegraph' processes) have been proposed in stochastic models of gene expression. Both Poisson and Telegraph scenario models explain experimental observations of noise in protein levels in terms of 'bursts' of protein expression. Correspondingly, there is considerable int...
October 13, 2009
The processes, resulting in the transcription of RNA, are intrinsically noisy. It was observed experimentally that the synthesis of mRNA molecules is driven by short, burst-like, events. An accurate prediction of the protein level often requires one to take these fluctuations into account. Here, we consider the stochastic model of gene expression regulated by small RNAs. Small RNA post-transcriptional regulation is achieved by base-pairing with mRNA. We show that in a strong ...
April 11, 2016
The intrinsic stochasticity of gene expression is usually mitigated in higher eukaryotes by post-transcriptional regulation channels that stabilise the output layer, most notably protein levels. The discovery of small non-coding RNAs (miRNAs) in specific motifs of the genetic regulatory network has led to identifying noise buffering as the possible key function they exert in regulation. Recent in vitro} and in silico studies have corroborated this hypothesis. It is however al...
August 30, 2019
Here we investigate single-cell stochastic gene expression kinetics in a minimal coupled gene circuit with positive-plus-negative feedback. A triphasic stochastic bifurcation upon the increasing ratio of the positive and negative feedback strengths is observed, which reveals a strong synergistic interaction between positive and negative feedback loops. We discover that coupled positive-plus-negative feedback amplifies gene expression mean but reduces gene expression noise ove...
August 11, 2010
According to recent experimental evidence, the architecture of a promoter, defined as the number, strength and regulatory role of the operators that control the promoter, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect noise in gene expression in a systematic rather than case-by-case fash...
November 18, 2018
Gene expression and its regulation is a nonequilibrium stochastic process. Different molecules are involved in several biochemical steps in this process with low copies. It is observed that the stochasticity in biochemical processes is mainly due to the low copy number of the molecules present in the system. Several studies also show that the nonequilibrium biochemical processes require energy cost. But cellular system has developed itself through natural evolution by minimiz...
December 30, 2014
Gene expression in individual cells is highly variable and sporadic, often resulting in the synthesis of mRNAs and proteins in bursts. Bursting in gene expression is known to impact cell-fate in diverse systems ranging from latency in HIV-1 viral infections to cellular differentiation. It is generally assumed that bursts are geometrically distributed and that they arrive according to a Poisson process. On the other hand, recent single-cell experiments provide evidence for com...