June 7, 2016
Similar papers 4
January 15, 2009
The community structure of a complex network can be determined by finding the partitioning of its nodes that maximizes modularity. Many of the proposed algorithms for doing this work by recursively bisecting the network. We show that this unduely constrains their results, leading to a bias in the size of the communities they find and limiting their effectivness. To solve this problem, we propose adding a step to the existing algorithms that does not increase the order of thei...
January 16, 2005
We propose a novel method to find the community structure in complex networks based on an extremal optimization of the value of modularity. The method outperforms the optimal modularity found by the existing algorithms in the literature. We present the results of the algorithm for computer simulated and real networks and compare them with other approaches. The efficiency and accuracy of the method make it feasible to be used for the accurate identification of community struct...
February 22, 2009
We survey some of the concepts, methods, and applications of community detection, which has become an increasingly important area of network science. To help ease newcomers into the field, we provide a guide to available methodology and open problems, and discuss why scientists from diverse backgrounds are interested in these problems. As a running theme, we emphasize the connections of community detection to problems in statistical physics and computational optimization.
November 10, 2023
The Louvain method was proposed 15 years ago as a heuristic method for the fast detection of communities in large networks. During this period, it has emerged as one of the most popular methods for community detection, the task of partitioning vertices of a network into dense groups, usually called communities or clusters. Here, after a short introduction to the method, we give an overview of the different generalizations and modifications that have been proposed in the liter...
July 30, 2016
Community detection in networks is one of the most popular topics of modern network science. Communities, or clusters, are usually groups of vertices having higher probability of being connected to each other than to members of other groups, though other patterns are possible. Identifying communities is an ill-defined problem. There are no universal protocols on the fundamental ingredients, like the definition of community itself, nor on other crucial issues, like the validat...
April 24, 2010
We focus on the detection of communities in multi-scale networks, namely networks made of different levels of organization and in which modules exist at different scales. It is first shown that methods based on modularity are not appropriate to uncover modules in empirical networks, mainly because modularity optimization has an intrinsic bias towards partitions having a characteristic number of modules which might not be compatible with the modular organization of the system....
August 22, 2019
Using an intuitive concept of what constitutes a meaningful community, a novel metric is formulated for detecting non-overlapping communities in undirected, weighted heterogeneous networks. This metric, modularity density, is shown to be superior to the versions of modularity density in present literature. Compared to the previous versions of modularity density, maximization of our metric is proven to be free from bias and better detect weakly-separated communities particular...
May 21, 2013
Many methods have been proposed for community detection in networks. Some of the most promising are methods based on statistical inference, which rest on solid mathematical foundations and return excellent results in practice. In this paper we show that two of the most widely used inference methods can be mapped directly onto versions of the standard minimum-cut graph partitioning problem, which allows us to apply any of the many well-understood partitioning algorithms to the...
April 8, 2005
We review and improve a recently introduced method for the detection of communities in complex networks. This method combines spectral properties of some matrices encoding the network topology, with well known hierarchical clustering techniques, and the use of the modularity parameter to quantify the goodness of any possible community subdivision. This provides one of the best available methods for the detection of community structures in complex systems.
February 12, 2019
The maximization of generalized modularity performs well on networks in which the members of all communities are statistically indistinguishable from each other. However, there is no theory bounding the maximization performance in more realistic networks where edges are heterogeneously distributed within and between communities. Using the random graph properties, we establish asymptotic theoretical bounds on the resolution parameter for which the generalized modularity maximi...