June 3, 2011
It was found recently that tunneling probabilities over a barrier is roughly twice as large as that given by standard WKB formula. Here we explained how this come from and showed that WKB method does give a good approximation over almost entire energy range provided that we use appropriate connection relations.
September 14, 2023
We study tunneling in one-dimensional quantum mechanics using the path integral in real time, where solutions of the classical equation of motion live in the complex plane. Analyzing solutions with small (complex) energy, relevant for constructing the wave function after a long time, we unravel the analytic structure of the action, and show explicitly how the imaginary time bounce arises as a parameterization of the lowest order term in the energy expansion. The real time cal...
October 16, 2009
A unification of the set of quasiprobability representations using the mathematical theory of frames was recently developed for quantum systems with finite-dimensional Hilbert spaces, in which it was proven that such representations require negative probability in either the states or the effects. In this article we extend those results to Hilbert spaces of infinite dimension, for which the celebrated Wigner function is a special case. Hence, this article presents a unified f...
April 3, 1997
Path-integral approach in imaginary and complex time has been proven successful in treating the tunneling phenomena in quantum mechanics and quantum field theories. Latest developments in this field, the proper valley method in imaginary time, its application to various quantum systems, complex time formalism, asympton theory for the large order analysis of the perturbation theory, are reviewed in a self-contained manner.
July 4, 2021
Quantum particles interacting with potential barriers are ubiquitous in physics, and the question of how much time they spend inside classically forbidden regions has attracted interest for many decades. Recent developments of new experimental techniques revived the issue and ignited a debate with often contradictory results. This motivates the present study of an exactly solvable model for quantum tunneling induced by a strong field. We show that the tunneling dynamics can d...
May 13, 2005
Solutions to explicit time-dependent problems in quantum mechanics are rare. In fact, all known solutions are coupled to specific properties of the Hamiltonian and may be divided into two categories: One class consists of time-dependent Hamiltonians which are not higher than quadratic in the position operator, like i.e the driven harmonic oscillator with time-dependent frequency. The second class is related to the existence of additional invariants in the Hamiltonian, which c...
October 17, 2000
I propose to consider photon tunneling as a space-time correlation phenomenon between the emission and absorption of a photon on the two sides of a barrier. Standard technics based on an appropriate counting rate formula may then be applied to derive the tunneling time distribution without any {\em ad hoc} definition of this quantity. General formulae are worked out for a potential model using Wigner-Weisskopf method. For a homogeneous square barrier in the limit of zero tunn...
November 19, 2017
Quantum tunnelling phenomenon allows a particle in Schr\"odinger mechanics tunnels through a barrier that it classically could not overcome. Even the infinite potentials do not always form impenetrable barriers. We discuss an answer to the following question: What is a critical magnitude of potential, which creates impenetrable barrier and for which the corresponding Schr\"odinger evolution system separates? In addition we describe some quantitative estimates for the separati...
October 31, 2010
Classical mechanics is a singular theory in that real-energy classical particles can never enter classically forbidden regions. However, if one regulates classical mechanics by allowing the energy E of a particle to be complex, the particle exhibits quantum-like behavior: Complex-energy classical particles can travel between classically allowed regions separated by potential barriers. When Im(E) -> 0, the classical tunneling probabilities persist. Hence, one can interpret qua...
May 18, 2007
We consider simple models of tunneling of an object with intrinsic degrees of freedom. This important problem was not extensively studied until now, in spite of numerous applications in various areas of physics and astrophysics. We show possibilities of enhancement for the probability of tunneling due to the presence of intrinsic degrees of freedom split by weak external fields or by polarizability of the slow composite object.