November 20, 2023
The prime motivation behind this paper is to prove that any torus link $\mathcal{L}$ can be realized as the union of the one-dimensional connected components of the set of critical values of the argument map restricted to a complex algebraic plane curve. Moreover, given an isolated complex algebraic plane curve quasi-homogeneous singularity, we give an explicit topological and geometric description of the link $\mathcal{L}$ corresponding to this singularity. In other words, w...
June 11, 2019
To every rational complex curve $C \subset (\mathbf{C}^\times)^n$ we associate a rational tropical curve $\Gamma \subset \mathbf{R}^n$ so that the amoeba $\mathcal{A}(C) \subset \mathbf{R}^n$ of $C$ is within a bounded distance from $\Gamma$. In accordance with the terminology introduced by Passare and Rullg{\aa}rd, we call $\Gamma$ the spine of $\mathcal{A}(C)$. We use spines to describe tropical limits of sequences of rational complex curves.
August 23, 2004
We study the non-archimedean counterpart to the complex amoeba of an algebraic variety, and show that it coincides with a polyhedral set defined by Bieri and Groves using valuations. For hypersurfaces this set is also the tropical variety of the defining polynomial. Using non-archimedean analysis and a recent result of Conrad we prove that the amoeba of an irreducible variety is connected. We introduce the notion of an adelic amoeba for varieties over global fields, and estab...
August 6, 2011
In this paper, we study the amoeba volume of a given $k-$dimensional generic analytic variety $V$ of the complex algebraic torus $(\C^*)^n$. When $n\geq 2k$, we show that $V$ is algebraic if and only if the volume of its amoeba is finite. In this precise case, we establish a comparison theorem for the volume of the amoeba and the coamoeba. Examples and applications to the $k-$linear spaces will be given.
October 2, 2000
In this paper we prove the topological uniqueness of maximal arrangements of a real plane algebraic curve with respect to three lines. More generally, we prove the topological uniqueness of a maximally arranged algebraic curve on a real toric surface. We use the moment map as a tool for studying the topology of real algebraic curves and their complexifications.
December 30, 2010
For a real smooth algebraic curve $A \subset (\mathhbb{C}^*)^2$, the amoeba $\mathcal{A} \subset \mathbb{R}^2$ is the image of $A$ under the map Log : $(x,y) \mapsto (\log |x|, \log | y |)$. We describe an universal bound for the total curvature of the real amoeba $\mathcal{A}_{\mathbb{R} A}$ and we prove that this bound is reached if and only if the curve $A$ is a simple Harnack curve in the sense of Mikhalkin.
March 21, 2013
This paper studies the curvatures of amoebas and real amoebas (i.e. essentially logarithmic curvatures of the complex and real parts of a real algebraic hypersurface) and of tropical and real tropical hypersurfaces. If V is a tropical hypersurface defined over the field of real Puiseux series, it has a real part RV which is a polyhedral complex. We define the total curvature of V (resp. RV) by using the total curvature of Amoebas and passing to the limit. We also define t...
January 28, 2015
\textit{Harmonic amoebas} are generalisations of amoebas of algebraic curves immersed in complex tori. Introduced in \cite{Kri}, the consideration of such objects suggests to enlarge the scope of tropical geometry. In the present paper, we introduce the notion of harmonic morphisms from tropical curves to affine spaces and show how these morphisms can be systematically described as limits of families of harmonic amoeba maps on Riemann surfaces. It extends previous results abo...
September 27, 2009
In this paper we study the local behavior of an algebraic curve under a geometric construction which is a variation of the usual offsetting construction, namely the {\it generalized} offsetting process (\cite {SS99}). More precisely, here we discuss when and how this geometric construction may cause local changes in the shape of an algebraic curve, and we compare our results with those obtained for the case of classical offsets (\cite{JGS07}). For these purposes, we use well-...
March 8, 2006
The amoeba of an affine algebraic variety V in (C^*)^r is the image of V under the map (z_1, ..., z_r) -> (log|z_1|, ..., log|z_r|). We give a characterisation of the amoeba based on the triangle inequality, which we call testing for lopsidedness. We show that if a point is outside the amoeba of V, there is an element of the defining ideal which witnesses this fact by being lopsided. This condition is necessary and sufficient for amoebas of arbitrary codimension, as well as f...